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Chapter 1:
Algorithm Analysis
HOW TO

"

SOLVE
"

A PROBLEM ASYMPTOTIC NOTATION
BIG-0 NOTATION

: 0 (fcn))
-

When solving a problem , we should

① Write down exactly what the problem .

we say
that

"

fame ocgcn))
"

if there exist

is ;
I
c >0

,
no>

0 Sit -

eg Sorting Problem
lfcn) / s clgcn)l

Yn> no -

→ given
n
numbers in an array ,

eg fcn ) = 75N -1500
& gcn)=5n?

put them in sorted order

c =L & no __ 20

② Describe the idea ;

Usually ,
"

n

"

represents input size
.

eg Insertion sort Idea:

1÷g÷
Ñ"% ""

SHOW zit 3h2-111 C- OCNZ)
one item into the

correct space of "

"
To show the above

,
we need to find c. no

such

the sorted part.

that 0s 2h43m -111£
Crf V-nano .

③ Give a detailed description : usually
5011 . Consider no

=/
.

Then

pseudocode .
ten ⇒ ten

"

⇒ 11<-11,2
eg Insertion sort :

ten ⇒ neri ⇒ 3ns 3n^

fori-1.is/j--i ⇒

'ñ+zn+?¥%+3ñ=l6n'
while j >0 and A -4--13 > AEJ ] | ,

swap AEJ ] and AEJ -1 ]
Hence ⇐ , , & no=\ ,

so
25+3^+1 ' c- OCT) - ☒

D-NOTATION (BIG OMEGA
): fcn) C- rlgcn))

④ Argue
the correctness of the aY°*hm

.

we say
"

fan, eszcgcn))
"

if there exist c>0
,
no > °

→ In particular, try to point out 1001

such that

invariants & É
-

clgcn)
/ E lfcn) ) ltn > no .

⑤ Argue the run - time of the program
-

O - NOTATION (Bzu THETA) : fcn) C- Ocgln))
→ we want a theoreticalb°

•

-

we say
"

fame ocgcn))
"

if there exist 9- '2 >
°
' no> °

( using asymptotic notation) .
Such that

To do this
,
we count the #°fpñi* c

,
/gcn) / e lfcn)1

I Czlgcn> 1 .

operations.
' Éz Note that

PRIMITIVE OPERATIONS fcngeocgcn,)<
⇒ fcnjeocgcnl ) & 5-G) c- ^5"" -

-

In our computer model
,

o - NOTATION (SMALL 0) : f-(n) E
0 (Gcn))

"
① our computer has memory

cells
'

We say
"

fcn) c- ocgcnl)
"

if for any
c > 0

,

there

② all cells are equal
③ all cells are big enough to store °"

exists some no > o
such that

numbers
/ fcn) / < clgcn)l

Yn>%'

'

Then
,

"

primitiveoperations
"

are +
, -,*, ÷,

°

load & following references .
If fcn) c- ocgcn) ) , we say fcn) is

"

asymptotically

strictly smaller
"

than gcn
) .

'

We also assume each primitive operation
W -NOTATION ( SMALL OMEGA) : fcn) c- cecgcn

))
takes the same amount of time to run .

'

We say fcn) c- wcgcnl ) if for all c>0 , there exists

some no >0 such that

OE clgcn) / < lfcn
)l Yn>no .



FINDING RUNTIME OF A PROGRAM OTHER LIMIT RULES
-

'

To evaluate the run - time of a

program, given
-

The following are corollaries of the limit

its pseudocode , we do the following : rules :

① fcn) c- Ocfcn
)) } ( Identity )

① Annotate any primitive operations with just

② K- f- (n) c- Ocfcnl
) YKER } (constant multiplication)

"

Oct )
"

;

② For any loops , find the worst-case bound for ③ fcnjeocgcn) , gcnleochln
) )

how
many

times it will execute ; ⇒ fcn) c- ochcn) ) } ( Transitivity )
④ fcnlercgcn) , gcn)

c- Schenn

③ calculate the big -0 run time of the program
:

⇒ fcn) c- Ichor))

④ Argue this bound is tight Cie show program
is

also in Shcgcn) ) , so runtime c- Ocgcn) ) . y
⑤ fcn)E0CgCn)). gcn) shin) th>N

⇒ fcn) c- Ochcn ) ) ) ( Dominance)eg insertion ⑥ fcn) c- rcgcn)) , gcn ) >
hln) n >N

for i=l , . . -, n
- l ⇒ f-( n) c- IchCn))

j=i Oct ) ⑦ f. (n) C- 0cg .cn)) , fzln) c- Olgin) )( while j >0 and AEI"] > AH ]

swap n.gg , and ag
.

. , , Yoon ,/ OH ⇒ f.cn, + fun, ⇐ og.cn, +gin,) } , addition,⑧ f. Cn) C- rcg.cn) ) , fzercgzcnl)

j-- ⇒ f.cnltfzcnlc-rcg.cn) + gin
))

Then
,
let c be a

const s -t . the upper
⑨ hcn> c- Ocfcnltgcn)) } (maximum - rulebounds all the times

needed to execute

⇒ hcn) C- Ocmaxcfcn) ,gcn))) for 0 )
one line .

so run-time f n - n - c = c-ÑEOCÑ) . ④ hcn) c- rCfcn)+gcn))

⇒ hcnlercmaxcfcni.gg) )) }
(maximum - rule

Next , consider the worst pos .
case of

insertion sort : for my

FIFI - - - - fcn> c- pack) ⇒ fcn) C- ①(nd) cc POLYNOMIAL RULE>
>

War
For each AEI]

,
we need i -1 swaps .

-

'

Let fcnye pd( IR
)
,

ie of the form fcn)= cot cent ' -
' + Cand '

So n -1 Then necessarily fcn) c- ⑦Gd ) .
runtime > ¥Ii-D b> 1 ; logbcn) c- ①Clog n)

<CLOG RULE I>>

= i = 'ny
"

Cet b > 1 . Then necessarily logh.cn/c-OClogn) .
ercñi . |*?iifand so P-wof.NO/e ( Kogen

)

runtime c- OCÑ ) - lion 109bar ) ( im

no
= n→n

Iim fcn)

n→ngTn,
= Lex ⇒ fcn) c- 09'm) = Liz ,g÷, > 0 .

<< LIMIT RULE
I>> (Ll - ' (2)) so by limit Rules I & 3

, logbcnle 0909
" ) . ☒

Cid >0 : logan c- ocnd ) << Loa RULE
-

"
let fcnl . gcn)

be such that ¥zgf¥=L< oo .

Then necessarily fan> c- 09""- '

'

let c. d > o .
Then necessarily 10g

" c- °(nd !

Pref . We know ¥%fg÷n, =L .

where log
'

n = ( login )
'

.

⇒ He>o : 7- ne
sit . lfg¥, -4 < e Yn> ne .

Pnsof. see that
we want

to show

limlnhnn
"

Iim kln""Y7- C> 0
,
1- no

7 V-ns.no , fin)Ec
-gcn) .

n→n n→n

Choose E=1 . Then there exists a n
,
St .

L'H

1 fcn
)

Hn>in
, , gTn)

- Lt ← I
- = . .

.

Lil-1

=
Iim⇐ §÷, - Le 14¥, -11<-1 .

no ÷
⇐ HI £ 1+1 = 0

,

gcn) so Intent oln ) .
<⇒ fcn ) £ Lgcn) + gcn

) ( since 9") > ° )
fix c.d > o

.
Then

choose [ =L-11 . Note fcnl.gov> 0, so 2+1>0 , and

i::÷=E÷÷isince Leo
,

thus CCN .

Now, for all n >,n , ,
fcn) I c.gcn) ,

and so f-G) £09"" - ☒

g g , ;m,nT£7 nyd
n→n=/im fcn)

n→oogTn,
= 0 ⇐ fcn) c- ocgcn))

= Od = 0 .

=

n→a To
= ⇐i. 0=0 .

<< LIMIT
RULE I>> (Ll - ' ( t )) as logan = (E)

'

in'n
,

this
1in
"S
"

"

-

'

let fcnl . gon) .
Then hi→%§¥=0 pwog follows from

the limit rule . ☒

iff fcnleocgcn) ) . f-(n) Eocgcnll ⇒ fcn) C- Ocgcnll
Iim fcn)

n→wg-,n,
=L > 0 ⇒ fcn) C- NYC")) - "

suppose fine ocgcnll
. Then f-Cn ) c- 0cg 'M) .

LC LIMIT RULE It>> ( ( 1. I (3) )
f-(n) c- ocgcn)) ⇒ fcn)¢r(gcn

))
"

let fcnl , gcn)
such that ¥I§÷, =L > 0 . "

suppose f- Cn) tocglnll . Then fCn7ERCgCnD.
Then necessarily fcn) c- Regen ) ) .

Puff . Prove by contra + ve : i

Iim Hnl fcnjercgcn)) ⇒fcntc-OG.cn/.n-oogTn)--N=fcn)EwCgcn
))

consider cases for !i→%f§¥ .

<< LIMIT RULE It>> (Ll
' " ' "))

casei It DNE .

!
let fcn ), gcn)

such that dL§÷, =D .
⇒ fcn)¢ ocgcn) ).

Then necessarily fcn ) c- wcgcn)) . Cased limit exists .

Then by fcn) c- rcgcn) , they

fcn ) 3C -gcn) for some
c > 0 & n > no .

⇒ Iim

Mogens
3C > o

⇒ limit to

⇒ fcn) d- ocgcn) ) . ☒



fcnl C- wcgcnll ⇒ fcn) c- Regen)) SORTING PERMUTATION [OF AN ARRAY]

"

suppose fcnlewcgcnll.
Then for'E^G"" -

A "

sorting permutation
"

of an array
A is the

WORST- CASE RUNTIME : Tworstcn) permutation IT :c:O , . . . , n - i } → i. o , . . - in -1 }
A

such that
"
The

"

worst-case runtime
"

for an algorithm, denoted
AETICO) ] E AETICI ) ] E- . - E AETICN -17] .

Taw
""Cnl

, is the max run-time among
all instances

*

A 01T would be
"

sorted
"

.

of size n .

eg if A = [ 14,3 , 2,6 , 1. 11,7
]
,

then

ANALYZING RECURSIVE ALGORITHMS
-11=94,2

,
1,3 , 6,510 } .

Consider merge
sort : -

for a sorting permutation
Tl
.

we define
its

→
inverse IT

-
'
to be the array

which entries have

← 7¥
exactly the same

' '

relative order
"

as
in A -

⇒
← → ?

. .

" eg IT
- '
= [ 6,2

,
,
,
3.0.5.4]

( if A is as above)
- - -

-
'z Analysis of merges"t

:

=3
We denote

"

Tin
"

to be the set of all sorting

mergesorl-CA.in , leo , rc-n-1.sc
- NIL)

permutations of ÉO, . . -

,
n - I }

.

A : array of
size n

,

Osler en
-1

if s is NIL init it as array
"°
"

" '] AVERAGE-CASE RUNTIME : TAa✓9 (n)
if Cree) then

"
The

' '

average
- case run- time

"

of an algorithm is

return '

defined to be
else

m= Corte) / 2 avg Tac -1 ) =
1- ITACI)

,

mergesortcA.n.l.m.SI Tt"%^) := I c- InIT~nlieznmergesorl-CA.n.mil,
r , 5)

where In is the set of instances of site ^ -

MergeCA.l.m.ms
)

z
In particular , if we can map each instance I to a

merge (A. e. on ,r,
5)

permutation a- c- Tln
,

where Tln is the set of all

A[0, . . . ,n - i ] is an array .
All

, .
.. ,m] is sorted ,

permutations of go , . . . ,n - I } , then we may alternatively
AEMH, .. .,r] is sorted

,
SEO , . . ,

n -1 ] is an array

slate that

copy
All .- - r] into Stl .. - r]

int i ,←e ;
int iR←m

"

Tay (n) = I TCTI )
for ( k←e ; Keri

ktt) do
ITEITN

if Ci
,
> m) AEK]←S[iptt]

else if Cir> r) Alk]←s[ii.+
+] where TCTI) is the number of comparisons on instance

else if (S[ii.stir] ) AEK] c- Stilt -1] IT
-1
.

else A -1h] ← stir-1-1]
"

Arguing run-time :

let Tcn) = run -time of merge
sort with n items .

i. Tent {
/ ' ' nfl

( 2- 1-(E) + c. n , otherwise

C- ① Cnloqn ) (see below)

SOME RECURRENCE RELATIONS
- :

Note :

Recursion Exampte

Ten ) = Tcn/2) + Oct )
Tin ) c- 01109h ) Binary

search

Tcn) = 2TCn /z) + Ocn )
Ten ) c- Ocnlogn ) merge

sort

Tcn) = 217^12) + Oclogn)
Tcn) c- Ocn ) Heapify

Tcn) = Tccn ) + Olnl ,
0< ccl Ten) c- Ocn) Selection

Ten)= 21-(447+011)
Tcn) c- Own ) Range

search

Tcn) = Tarn ) + Oct ) Tcn)E 0110910g n) Interpolation
search



EXAMPLE : AVGCASEDEMO
'

Consider the algorithm

avgcasedemoCA.nl
11 array

A stores n distinct numbers

1 . if nez return

2 . if Acn -2] E Acn
-1] then

3- avgcase Demo
CAIO . . . I- 1) , E) 11 good case

4- else

5. avg.casedemoCAEO.mn-3 ] ,
n -z) 11 bad case

we claim 1-
"9 ( n) c- Oclogn) .

Puff . To avoid constants
,
let TC .) := # of recursions : Then

,
since / Tin

°d

/ = tzln / = Iz
,

it follows that

the run-time is proportional to this .

As all numbers are distinct
,
we may

associate each / TIN
"

I /11Th;) /
,

and so

array with a sorting permutation . good
I TCI) = / TINS

"d

/ + I / Tin ( Ti
'

) / . Tit
'

)
so for IT c- Tln , let TCT, ) = # of recursions

done if

Tie-in'll Tietz,
the input array

has sorting permutation 1T .

= ftp.good/+-zlTnTdy-.-,-iy
Note we have two kinds of permutations

:

Tietz, / TILES

①
"

Good
"

permutations
- if Acn-2] < Ain- I ] ; or

ITCTI' ))
②
"

Bad
"

permutations
- if Atn -2] > At"

"]
. = / IT?

""

/ ( I -111T¥#egg,
Denote = 1 Third / ( I + Tart ( ( E ) ) )Tln9°°d = # of good permutations of size n

& Tlnbad = # of bad permutations of size ^ - as needed . #

Next
,

see that 1 Tin
"

I =/ Tlnbedl , since we can map
Then

,
we claim that

any bad perm to a good one ( and v.v . ) by swapping
I TCTI) f☒9°°d / ( 1+-1"9( ( Iz ) )) )
TiETn9°°d Afn-2] & AIN-1 ] .

& I Tit) E III.
bad

/ ( I -1T"9Cn -2) ) / .
Thug in

good 1 =/ Tlnbad / =
,

and so

Tletnbad

Pref. we only prove this for good permutations;
1-
" 9
(n) f ITCI) I (I TCI ) -1 ITLI))

the other claim is similar . Ietn If -1480
'd

Ietnbad
Fix TieTn8°d ,

and let Tina,f
be the

f ( 1118
"

/ ( I -1T"8((Es ) ) + inbadkl-1T "%n-21))
permutation of the recursion ;

ie Tina ,f
= the sorting pen of Tl

- "

[01--1^-2-1] &
= / + IT "9( ( Eg ) + IT"Jcn-2) .

TCIT) = I + Tttnalf) -
Finally , we show 1-

"9in) e- 210g n by
Note that Tina,f

c- TILE, . Then see
that

induction .

Clearly , this holds for he 2
.

I TCTI) = I [ It Tina,fD
tetrapod TeTlnN°d So

, assume n >, } . Assume
the inductive

= / q9°°d / + I Titnaif ) hypothesis . Then see that

tetrapod
Tavgcn ) E It IT"9( LE) ) + IT"9(n -z )

=/ TINS
"d

/ + I 141T€ -11nF
"

for which Tina,f= -111} t.TT
'

)
.

TIETIL;) £ I + E. ( 2 log CLE ) )) + tzczlogcn -27)

£ It logcn-1) + login)we next
prove

the following claim :

= 210g (n),claim If n > 3
,
then / q8°dCTi) / =z,?,! YITÉT , ;] .

- which suffices to prove
the claim . ☒

Pioof - Fix TieTn°dCTi)
.

see that

☐ =

y
must have sorting one choice

perm
IT

'

by deft
-

corder predetermined
⇒ can be any of 1^-2 ) chosen . : this is a good
distinct nuns of ÉQ - - in-1} . arbitrarily

perm )from the

⇒ (Iz) ) choices . remaining rums

⇒ (El
TE? - 2)

choices

Hence
,
the # of choices is

( FE) ) . (
¥7
rzzz)( TEI - 2) ! = . . - =

, ,

as needed . #



EXPECTED-CASE RUNTIME : Text> (n) EXAMPLE : DYNAMIC ARRAYS
A

"

The
"

expected
- case runtime

"

of an algorithm :

consider dynamic arrays 40120€]] with

is defined to be
two operations :

IxPc-j-EE-Ak.RD-IR_c-iR7PCRI@TaiOinse.rt : &

② rebuild
,

where we
"

lengthen
"

the

array by a factor of 2 .

where R is a sequence of random outcomes
,

-

and PCR) denotes the probability the

z
Hence

,
insert takes 011 ) time

,

& rebuild

random variables in the algorithm A
have

takes ocn ) time ( where n is the
site

outcomes R
.

of the array
) .

AMORTIZED RUN-TIME : T§M°
"

; Define a

" time unit
"

such that
"

insert
>

takes

"

let 0 be an operation , and let 1-
"""

(O) e.

one unit of time
" &

'

rebuild
'

takes
"

n units

be the actual run - time of 0 '

of time
"

.

Then
,

we say
0 has

"

amortized "" time ' "y We claim Tamort ( insert ) =3 &

yamortgo,
"

if for any sequence
of operations Tamort ( rebuild ) = 0 .

0
, ,

. . .

,
on that could occur

.

we have

pngof . at the potential function
I be defined BY

Ici) = maxio, 2. size
- capacity } .

T.z-actualco.jo?-am0rtCOi).J?.i?c.1ear1yoIci1zo .

Also initially site -0 & cap
> 0

.

So OICO) =o as desired .

POTENTIAL FUNCTION [OF A DATA STRUCTURE] :
now

,
+he amortized run - time for insert is

Tamort ( insert) = Tactual ( insert ) -1 Eater- #beforeI
'

A
"

potential function
"

is a function ☒c.) that depends ⇐ 3
,

as the actual time is E 1 unit
,
the size

on the status of the data structure .

increases by 1 & the capacity does not change .
"

z
In particular, for any sequence

0
, ,

. . .

,
Ou of operations :

similarly ,
① Ici) 30 lfizo

,

where OI; = the value of OI after
yamort ( rebuild) = Tactual (rebuild) + OI

after
- #

before

0
, , . . . , Oi have been executed : &

E n + ( o - n)
② Eco> = 0 .

= 0 . ☒

yamort ( O) :-, Tactual (O) + OT -

before
-

after
UPPER BOUNDS ACTUAL RUN-TIME
'?⃝"

For
any potential function I , the function

=

_amort(O):=_ad~dcO)-Eaf-er_EbefoÉÉ
upper

- bounds the actual run-time
,

where ☒
before

& #
after

denote the state of

the potential function before & after 0 -

PIL. Fix a sequence of operations 01 , . . .
,
Ou .

Summing up
the amortized times and using

a telescoping sum,
we get

u U

I Tamortco;) = E. ( Tutu"(0 ;) + Ici ) - Ici
-D)

i= ,

= §
,

-1
"""(g.) + ÉCOICI) - Ici-1 ))

1- =\

= ¥? -1
"""(0 ;) + Ecu) - 0=107

% To

> ÉT""
"
Cdi ) .

1- =\

STEPS TO PERFORM AMORTIZED ANALYSIS USING

THE POTENTIAL FUNCTION METHOD

'

To do amortized analysis using potential functions,

we do the following :

① Define a

"time unit
"

,

so that an operation
with

run-time Ock ) takes at most K time units .

② Define a potential function OI and verify

☒ co)=O & Ici ) 30 Hi > 0 .

③ For each operation
0

, compute

1-
amort

( O) :-. Tack" CO) + OI
after

- §
before ,

and find an asymptotic upper bound for it .



Chapter 2:
Priority Queues and Heaps

ADT PRIORITY QUEUES
•

A
"

priority queue
" stores items that have a

priority . or key .

'É'
z Operations :

① insert Ca given item
& priority as a k - v

pair )

② delete Max C return item with largest priority )

③ size
,
is Empty

3
We can use a PQ to sort :

PQ - Sort ( AEO ,
. . .

,
n - I ] )

init Pce to an empty PQ

for ico to n - I do

PQ . insert CAEI])

for i ← n - l down to 0 do

A- [ i] c- PQ.de/eleMaxC )
"

The run - time of the above algorithm is

0( initialization + n - insert + n.de/eteMax).

BINARY HEAPS

,

"

Binary heaps
"

are binary with the

following properties :

① Each level is filled except the last
, }

"

structural
"

property
which is filled from the left ;

② key lil skeycparentci ) ) }
"

heap -
order

property
"

layer 0 - - - - . -

go - - - Each node is

/ \ " shorthand
"

for a

layer 1 - - - - - -

zq - - - 34 - -

reference to a

/ islayer 2 . - -

izz . . . .
8! - To

. Chey - values pair :

/ priority -_ 50
layer 3.

zz . .
{G. - -

- -
-

-
"

so
"

↳ |data-"

Note that binary heaps have

height Oclogn) .
"

z
We store binary heaps using

an array
:

AEOT A
layer 0 - - - - . -

go - - -

A# \ A[z]
⇒ ° I 2 3 4 5 . . .

layer 1- - - . . . zg . . . } . , . . -29342715-8 - - .

A -1371 AEY] - " \
layer 2 . - -

izz . .ly . .
8! - lo .

Then

parental =L J
,/ \

.

. -layer 3.
zz . . zf

- - -
- -

-
-

similar implementation for

left/ right child .

INSERT IN HEAPS
'

To insert into a heap , we just place
the

"

new key at the first free leaf .

'

'

we also employ
"

fix- up
"

:

50 Pseudocode
48 ✗ \

34
fix -up ( Ack

)

2$ step
he : an index corresponding to a

# 2

2£ )☒☒É
,
g

/ \
,,

node of the heapwwepaantwe×is-I s¥Y A[ parent (k)]
< Ath] do

{ G 4$ 1st
swap

Ath] &

A[ parent Ch ))

k c- parental



DELETEMAX IN HEAPS
OTHER PQ OPERATIONS

- "

The maximum item of a heap is just - :
we can also support the following operations :

"

the root node . ①
"

findMaj
'

- finds the Max element without

-

§" removing
it :

z
We replace

the root by the last leaf , which

- in a bin heap
this takes Oct)

is taken out .
- since it is just

the root node
-

; Then ,

we use

"

fix -down
"

:

Pseud° ②
"

decrease key
"
- takes in a ref i to the location

#
>☒ 48 fix -down (Anik

)
of one item of the heap

and a key knew '

NA : an array
that stores a heap of

and decreases the key of i
to knew if

size n☒

?⃝
¥34

,, u : an index corresponding
to • rode

< ueyci )#3 \
g☒
£ To of the heap knew__

while u is
not a leaf

d°
- does nothing if knew > keyci)

tzb ✗ find child with larger hey - easy to do in a bin heap ; just need
to change

the key & then call fix-down on i

j c- left child
of k

*
we

' '

swap
down

"

from the Not -

if g. is
not lasting & AEJ -11] > AEJ ] ) to its children

node until the heap
- "de"^9

'

③
"

increasekey
. .

-

"

opposite
"

of decrease key .

j ← jti
- easy in bin heap ,

but just call fix- up
instead of

is satisfied .

if Acn] > AEJ ] break

-

"y Run - time : Ocheight)= 040g
n )

swap AEJ ] and Atk]
fix-

down

④
"

delete
"

-

delete the item i ( which we have a ref

u←j
HEAPSORT to)

.

increase
value of key

at i to •

'

If we use a heap as a Pd and sort using
- for bin heap :

Cor findmaxc ) . Keyes
-11 ) ;

it
,
the run-time of said algorithm is

- then call deleteMax

Tcn ) c- 0( initialization
+ n - insert + n.de/eteMax)

- takes oclogn)I.IE?j!-;?-oaYni+n.oaogni#
-

z
Pseudocode :

Heap sort CA ,
n)

11 heapify
n C- A.size C)

fforic-parentclastcbdowntood~six-a.mg?:iI...imum#
11 repeatedly

11
' delete

' maximum by moving to end andwhile ^ "

decreasing n

swap item at A[ notch and D-Elasto ]

n - -

fix - down CA , Noth ,
n )

*

Heaping :
Given : all items that should be on the

heap
It builds the heap attn

-

How ? → by fixing-down incrementally .

Heapify has run - time
041 .
=

Why? → analyze a recursive version :

heapifycnodei )
if i has left child

heapify Cleft child i )::÷÷÷'heapify ( right
child i)

Now, let

Tcn ) : -_ runtime of heapify
on n items .

( Assume n divisible as

needed . )
Then :

site cleft child ) = size ( right
child) = ¥ .

-

'

- Tcn) =L
04 )

,

ne i

( 1-(E) + T(⇒ + ①Clog n ) ,
otherwise

⇒ Ten) £2T(E) + Oclogn ) c- Ocn ) . ☒

'j Note this uses OCD auxiliary space ,
since we use the

same input
- array A for storing the heap .

storage array



MELDABLE HEAP
"

A
" meldable heap

"

is the same as a
"

binary

"

heap
"

,
except it drops

the structural

property .
*
so just

that each root is the

50

/ \
12 maximum of all its children

45

129
-

z Operations for meldable heaps :

① insert

• create 1- node
meldable heap P

'

w/ new k - v

pair we want to add

• call merge
( P , P

'

) w/ existing & newly- created

meldable heap
② deleteMax

• max is root
,

so just
remove that

,

• then return merge CPL , Piz
? where PL

pflp,
& PR are the

"

subheaps
"

of the

original heap
③ merge

meldabletleap : : merger, ,rz
)

input : r , , rz
( roots of two moldable heaps)

- r,
f- NIL

output : returns
root of merged heap

if rz is NIL
then return r

,

if r, - key < rz . hey
then swap riirz

randomly pick one
child c of r,..µ..y,µ,m.,?⃝

return r
,

eg ⑤ <→ ④ 50

→
45 '?⃝ 0 (since 18<50)

45
' "

iz 11

129
"

29

→
50

4s

' ' 01T
, z

"

29

50
→ / Tg45

/ \
tzq 11 12

AVG RUN -TIME (MERGE)
= 0110g n , -1 log nz

)

(L2 -3)

-

"

Note that

avg
run-time (merge )

= Oclogn , + log nz)

where n
, , nz

are the sizes of the heaps
to be

merged -



BINOMIAL HEAPS
PQ OPERATIONS FOR PBHS

FLAGGED TREES ,r
- "

Each of the PQ operations can be performed
-

'

A
"

flagged
tree

"

is one where every

glevel is full , but the not node °"'T
in ☐ ( log n) time with makeProper .

has a left child .
① merge(

P
, ,
Pz)

- "z Note that a flagged tree of height
,
concat lists of Pi , Pz into one

h has 2h nodes -

- then call makeProper
CDZ-3)

- takes time oclogn, -1109^2
) c- ° "°9 "

BINOMIAL HEAP
19 - - - - 12 - - . 18 - -- - - . . 16

"
.

A
"

binomial heap
"

is a list L of binary
g
' l s

' ② insert CK , ✓ )
" "

- like w/ weldable heaps : create a single -

trees such that 5
/
To ' '

' '
' 5 '

" "
9

node binomial heap, then call merge

① any
tree in L is a flagged tree

+
' 4,516

- takes time oclogn)
( structural property) ;

&

③ findMax C)

② for any node v. all keys in the left subtree

, scan through L and compare keys of the roots

of ✓ are no bigger than
V. key

- largest is just maximum

( order property ) .

- takes time OCILI ) c- 0409^1

④ deleteMaxi )
PROPER BINOMIAL HEAP

-
assume we found the max at not Xo of

"
we say a Bit is

"

proper
"

if no two
- 19 - - - - 12 - - . 18

flagged tree T
, say w/ height

h

flagged trees in L have the same 8
' /

( this + ane , oaign) time if heights
not already

5
/
To 11

'

"

is
known)

height -

7-
' '
y i' ' 6

- remove T from L and split it as follows :

A PBH OF SIZE n CONTAINS £ 10g(n) -11
- let × , be the left child of ✗

0 .

19×0

FLAGGED TREES (02-2)
and for Isiah ,

let ✗ i -11 be the
is'✗ ,

i
let a PBH have site n '

right child of ✗ i.

Then it contains at most login't ' flagged
trees .

- let Ti be the tree consisting

pnyof . Let 1- be the tree w/ Max height' "4
h
'

of ✗ i & its left subtree ;

in the list L of flagged trees .
this is a flagged tree - T

, Tz -13 T4

Then T has 2h nodes
,

so 2
"

£ "
'

- create a second BH P
' consisting

ie h Elogcn) - of T, , . . , -1h ,
and note this covers all heels

since the trees in L have distinct height" in T except Xo .

we have at most one tree for each height ° ' '
"'
"
'

- then
, merge

pi into what remains of the

and so at most h-11<-109^+1 trees . ☒

original binomial heap P .

- as P was proper ,
and the list of P

'

has length
MAKING A BH PROPER

HE /ogn , merging
(and thus

deleteMax)
has

- ! To make a Bit proper ,
we do the following :

run - time Oclogn) ."

if the BH has two flagged
trees T

,
T
'

of the

same height
h
,
then they

both have 2
"

.gg?
"

1,8
- - - -

- - - . 16 - - - -
- ---

g
- -- -- lo

ly
' ' 16×2 14 /

5nodes . 3

We want to combine them into one flagged tree

an :-. : "

Tz g
z
,

→
"
" "
"

of height htl - T,
Tz

T
} TY

-

To do so
,
we use the following algorithm :

( Az . , , , y
,

binomial Heap : : makePwperc )

nf size of the
binomial heap

"""""""
B ← array of site e-11

,

initialized at
NIL

" compute Llogn )

( ← list of flagged trees

while L is non- empty
do

1- ← L - popc ) ,
h←T. height

while 1-
'

← Bch] is not NIL
do

if T.no/-- hey < T
! root - key

then swap

T & T
'

T
'

. right c- Tleft ,
Tleft ←T

'

,
T. height c- htl ✗ merge

T with

B[h] ← NIL , htt

B[4) ←T

for Ch=o ; hee :
h -1+1 do 11 copy

B back to the list

if 13Th] # NIL
then 1. append (

Bth])



Chapter 3:
Sorting

QUICK - SELECTTHE SELECTION PROBLEM
'

The
"

quick
- select

"

algorithm:
'

"

The
"

selection problem
" is :

quick
- select CA ,k)

11 A : array of size n

"

Given an array
AEO

,
. . .

,
n - I ] and an index OEKCN,

K K : integer
S.t. Ock an

select ( A ,k ) should return the element in A

, , p ←
choose -piuotlca) I/ for now , P=^

-1

that would be at index be if we sorted A
"

!
z.ie partition ( Aip

)

3 . if i=k
then

return Aci ]4.

eg if A [ 0
,
. . . ,9 ] = 30 60 10 0 50 So 90 10 40 70

else if i > k
then

5.
return quick-select / CAIO, . .. ,i - I ] , k ]then the sorted array

would be
G.

7 ' else if ich then

° 10 10 30 40 50 60 70 SO 90

8- return quick- select / ( Ati -11 , i -12 , . . . ,n -1 ] .
h -i- 1)

so
*
intuition :

select (3) = 30 .

Have :i7
PARTITION [ THE FUNCTION

]

'

The
"

partition
"

function does the to"°wiY "

want :f
given

the pivot - value
v=A[P]

and ^^ •"T ' "
Run - time analysis of quick - select

:

2

AEO, .. , n
- I ]

, rearrange
A s - t '

we analyze the # of hey -comparisons
.

↳ so we don't mess with constants .

In particular , partition uses n key comparisons .

and return the pivot
- index i

- Then
,
the run-time on an instance I is

z partition algorithm (
"

efficient in -place partition - TCI, = I. +
TCI

'

)
-

partition sub array
Hoare

"

) :

*
we keep swapping How big is I

'

?

partition (Aip)
the outer - most best case : don't recuse at all → Ocn )

✗ A : array of
size ^

wrongly - positioned worst case : II 'l=n - I

xp : integer s -t . 0£ Pen
pairs : Twostcn) = Max TCI )

I

1. swap
CAEN -1 ]

,
Acn] )

= n + Tworstcn - 1)
2. it -1 , jen-1 , ✓ c- Acn - 1)

= n -1 ( n- 1) + Twostln-27ru
3. loop = . - .

4. do i ← i -11 while Ali]< v swap
= ncnz.tl#EOCn2 ) .

5.
do jcj -1 while j > I & Acj ] > v

Average - case :6. if i >j then break cgoto 9)

7. else swap
(Ati ]

. Acj ] ) Ta✓9(n)= ITCI)
IEIN8. end loop

9. swap ( Acn
-13
,
Ali ] ) = In ÷ Til,k)

.

h=o

to . return i we will do

① creating
a random quick select ;

② Analyze exp .
runtime ; then

③ Argue that
this implies

bound on avg
-

case of quick - select
.



RANDOMIZED QUICK - SELECT
'

,
consider the

"

randomized quick
- select

"

algorithm
:

quick
- select CA , 6)

11 A : array of size n

K K : integer
S.t. ockcn

t.pt random
(n) 11 key step

2. it partition ( Aip
)

3 . if i=k
then

return Aci ]4.

5. else if i > k
then

return quick-select / CACO, . .. ,i - I ] , k ]6-

7 ' else if ich then

8- return quick- select / ( Ati -11 , i -12 , . . . ,n -1 ] .
h -i- 1)

Then
,
what is P( pivot - index

= i ) ?

⇒ pivot
- value is equally likely to be any of

AEO]
,
. . .

,
Acn -1 ]

⇒
.
: pivot - index

is equally likely to be

any of 0
, . .

.

,
n - I

⇒ p( pivot index =i )
= ÷

'z We claim 1-
"Pcn ) c- Ocn ) .

Pw_of . Recall that

1- exp (n) =
Max [ PCR) . TCI

,
R)

I
random

outcomes R

In particular , note that

TCI
,
R) = In + T(A[9 .. .

/
i - i] .k , R

'

) i > y

TT
CA ,h> < i. R

,

> {
^+T( tight subway, k- l - 1. R

'

)
,

ich

n
i=k

(we count # of comparisons )

Then
,

IPCRITCI,R) = [ PCR)T( A ,k,R)
R R

= I Pci )P(R
'

)T( A ,YR)

( i.a) I #
÷ n+ii÷.

n - , / # PCR
'

)T(Ae , h , R
' ) i > k

=

ntn-E.gg#PlR')TCAr.h-i-i,RY} ichi=h0

U
'

Al

E n + in {
"" M"

# PCR
'

)T(Ae , hi , R
' ) ish

Max Max

F. PCR
'

)T( Ar ,
h
'

,R
') } ichi=o

(
k ' Ar

,
i=h

i > 4"
cis

= n+tnIcTe×P( n - i - 1) } icki=k
n - l

E n + In -2 maxi, 1-
" Pli )

,
c-
"Pen - i - il }

i=o

Then
,
we show Te×P(n)E8n .

PW-of.BY induction .

n= 1 : comp = 0 < 841--8 .

step :
n - e

Tcn) E n -1 ±¥oma×&8i , 8in
- i - i ) }

É
n /y

en + In -28L?,n) + £-28m
i good

i bad

= n -1 £ . 1z( Gn) -1 In . Izcsrn )

= n -13Mt Yn
= 8h . #

.

'

. Text> (n ) Eocn) . ☒



QUICK- SORT
- "

pseudocode :
1 AVERAGE - CASE QUICK - SORT

quick- sort
/ CA )

'

We accomplish this via randomization of the
11A : array of size n

1 . if net then return

algorithm :

2. p c- choose - pivot/
CA )

3. it partition (Aip
) Randasort CA )

4. quick - sort / CACO , . . . , i
-1 ] )

,, A : array of site ^

g- . quick - sort / ( Afi -11 , . . - , n
- l ] )

1 . if ne , then return

"

There are better implementations of this z.pe random (n)

=z 3. it partition (Aip
)

idea .

4 . quick - sort / CACO , . . - , i
- l ] )

"

Runtime :
5 . quick - sort ICAEI -11 , . . . . n

- l ] )
-

Then
,2

m*+÷
. . .in

But there's a simpler method : the recursion
Texpcn) = exp # of comparisons of the algo .

tree . # comparisons Note that

array ,
R
'

) + 1- ( right
sub

TCA
,
R) = n + 1- (

left sub

\ J
^-_;-ei÷÷① n - - - - -

- i - r - n - ten instance /
/ \ \

-

Hence
outcomes

/

n-i- . . . . . . n - 3 or n -2
4

i
> n -3 IpcR)-CA,R)=n_InÉ_e×P(i1-±§-"PCn-i÷I \

/ , / \ / \

i. : : :

← n R i=o

a .

. .
- - . - - .

.
.
. .

. -
- .

. En ,
3h - # subproblem'

= n + 2- §÷Te×P( ;) ,+ 1 .

and so

Thus

#compaisonsEn.#layers=n.heightof-herecwsionf Tm=I÷÷⇒,.÷iwistree
.

'

'

We claim Tcn) c- Oclogcn)) , so the expectedy

So what can we say 5

run - time of Randasort is in Ocnlogn) ,
and

so the
average

- case run time of Qsort
is

height = Ocn
)

"

÷:÷:÷"
""

① Worst case :
in Ocnlogn) .*

tight if array is sorted .

PI0f - Specifically . We prove
Tcn ) EZ.n.tn Cn )

.

- we need n
recursions .

By induction . Base (n=i ) is trivial .

② Best case : if the pivot
- index is ~ ? step : Tcn ) In + In Zilnci )

always .

= n -1¥ ilnci )
n

i=z

nl! Ik µ .:heiqnt=1°g Ent ¥fz^×in✗d× i since ✗h×

/ \ / is increasing)

My uh, %,
lily

^

E n -1 In rilncn) - In]
Thus run - time c- Olnlogn) . = n -1 Znlncn) - n

'0
"

=
,
we can improve

Quick Sort 's run - time by = znlncn ) . ☒

① Not passing sub - arrays ,
but instead passing

"

boundaries
"

;

② stopping
recursion early ;

• stop recusing when array of subproblem is c- 10

• then use insertion - sort to sort the array

• which has Ocn) best - case run time if the array

is (almost ) sorted

③ Avoid recursions ;

④ Reduce auxiliary space ;

• in the worst case ( currently) , the auxiliary space
is

151 c- Ocn) .

• but if we put the bigger subproblem on
the Stach

,

the space can be reduced to 1St c- 0110g ") -

⑤ Choose the pivot
- index efficiently ;

• dorit let p=n
-1

.

( run - time :
Ocn
'

) )

• use
"

median - of -3
"

: use the median of

{ A -10] , AE LEI
]

,

Acn-1 ] } as the pivot -

value



ANY COMPARISON BASED SORTING ALGORITHM

USES D. Cnlogn) KEY - COMPARISONS IN THE

WORST- CASE
'

As above .

Ploof . Fix an arbitrary comparison - based sorting algorithm

1-
,

and consider how it sorts an instance of

size n .

Since 1- uses only key- comparisons, we can

express it as a de~ .

✗
☐
:X

,

Yi
✗
lixz ✗ i. ✗ z

44+ ×
01112

✗ g. ✗,

✗0 : ✗ 2 2
, 1,0

A.

012,1 2,0, I 11012 112,0

A decision tree for an algo to sort 3 elements

✗0.x, ,Xz with £3 hey - comparisons .

For each sorting permit, let It be

an instance that has distinct items

and sorting perm
IT Cie I,y= -11

"

)
.

Executing 1- on IT, leads to a leaf

that stores IT.

Note that no two sorting perms
can lead

to the same leaf, as otherwise the output

would be incorrect for one Cas the items

are distinct )
.

We then have n ! sorting perms , and hence at

least n ! leaves that are reached for some Ip .

let h be the largest layer - number of a leaf

reached by some It .

Since Y is binary , for any
OELEH there are

at most 21 leaves in layers
0
, . .;l .

Therefore 2h3m !
,
or

h > login ! ) = log Cncn -1 ) . . - 1)

= logcn ) + login
-1) + - . . + toga )

3 login ) + login-1) +
- . . -110gCRED

3 log (E) + log (E)
+ . . -

+ loge? )

3 Iz log (E)

= Izlogcn) - I c- Shlnlogn ) .

Finally ,

consider the sorting perm IT that has its leaf on

layer h .

Executing algorithm A on IT, hence takes her Cnlogn )

key - comparisons ,
so the worst - case bound holds . ☒



SORTING INTEGERS

BUCKET- SORT LSD -RADIX - SORT
Bucket -sort can

be used to sort a collection
"

LSD - Radix - Sort
"

is a better way of sorting

of integers by a specific
"

position
"

of digit . ,

multi - digit numbers ( than MSD ) because

eg the last digit 12341
① it has a faster runtime :

'

Pseudocode :
" ② it uses less auxiliary space :

and

bucket -sort ( A, ne A. size , Leo,
r←n-1

, d)
③ it uses no recursion .

11A : array of size > n with numbers with

m digits
in 40 , ..-112-1 }

'z Pseudocode :

" d : 1£ dem LSD - radix - sort ( A ,
NEA - size)

11 output :
Ace . -- r ] is sorted by

"

d
"

digit .
11 A : array of site n

,

contains m -digit
1. initialize an array

BEO -- -
R - l ] of empty

radix - R numbers
,

M ,
R are global

lists 1
. for dem down to I do

2. for itl to r do
2 .

bucket - sort ( A. d)

3. append Ali] at the end of 11 move array
- items

B Edth digit of Afi ] ]
to buckets Clearly

4. ice ① run - time =
Ocmcn -112)) : &

5. for jeo to R - I do
a move bucket - items

② auxiliary space
= Ocn -112 ) .

6. while Bcj ] is not empty do to array

7. move first element of BE;]
to Afi ]

8. it -1

eg A ⇒ B- ⇒ A-
12-3 B[o ] → 230 → 320 → 210

→}§§230 Bfi ] → 021 → 101

021
Ben → a"

320

210 101
B[ 3) → 123

{{§232

101
- "

see that

① Run - time = Ocn -112) ; and

② Auxiliary space
= Ocn -112) .

MSD - RADIX -SORT
' "

MSD ( most significant Digit
) radix sort

"

can be

used to sort multi - digit
numbers .

'

2
Pseudocode :

MSD - radix- sort CA , n c- A.size
,

LEO
,
rtn-1

,
del )

11 A : array of size 3h , contains numbers with

m digits in Io ,
. . -

,
R - i }

,
m ,
R are global

variables

" l ,r : range
Cie Ace .. .r] ) we wish to sort

✗ d : digit we wish to sort by

1 . if lcr then

2. bucket - sort CA , n , e ,
r
,
d)

3 . if dam
then

11 find sub-arrays
that have the same

dth digit and recourse

4. int e'← l

5- while e'or do

6. int r' c- e
'

7 '
while r'er & dth digit of

Acr
'

-11] =D
"
digit of

Ate
' ] do r 't-1

8. MSD-radix-sorl-CA.n.li r ! d -11 )

9. e' c- r ' +1
'

'

Note that

① run - time = 0cmRn) ; &

② auxiliary space
= Ocntrtm) .



Chapter 4:
ADT Dictionaries
DICTIONARIES

'

'

Dictionaries
store key-value pairs , or

"

KVP ! LAZY DELETION
"

consider a sorted array :

D-- delete(20) :

hey value
10 2¥30 40 60 70 80

In particular, ←- - ←

• usually takes Ocn) time to
" backtrack

"

① search Chey) : return the KVP

all other elements
for this hey .

• but we can avoid this if we instead

② insert Chey , value
) : add the KVP to

just mark the box as
"

is Deleted
"

.

the dictionary .

- hey is distinct from existing keys . thus run - time (search ) = 01109^1 .

• but we don't get any space back !

③ delete (hey ) : remove KVP with this

• however
,
we can occasionally

" clean
'

up
'

:

hey .

- create a new initialization ; &

Assumptions : - move all items into the new array
°

① we assume all keys
are distinct-

if they were
" real

"

.

② we also assume keys
can be

. clean - up
takes Oln * insert

)
.

compared- By, we can frequently do better
,

- in this

'

Implementations :

example , we can perform clean-up
in

3

① Unsorted list
Ocn ) time .

. fast insert ,
slow search ' slow delete

Then
,
the amortized time is 0C insert + delete)

② Sorted array for doing a deletion
,
and sometimes better.

• fast search , slow insert , slow delete

"

why do we do lazy deletion ?

③ Binary search tree / BST z

- we only show the ① It is simpler :
15

keys ( implied each ② It might be faster .

6
/ 125 node is a KVP ) . for sorted arrays

: Ocn) worst - case for delete

bit Oclogn
) amortized time for lazy deletion)

£13S • has the property
✗ i. ③ It sometimes is required .

-8"'

I =3 Why net ?☐
Ex > × ① It wastes space .

In particular.
• we have to allocate space to

store the

insert , delete ,
search C- 0C height of tree ) .

"
isDeleted

"

flag .

② Occasionally deletion is VERY
slow .

*

Height is Ocn) is worst case , but typically

much better coclogn))



AVL-TREES AVL OPERATIONS
Goal : Ociogn) worst case time '

INSERT , PART
I

"
structural condition :

-

'

First , we can BST : : insert, and then rebalance

2

For
any

node Z
,
we have

the ancestors of 2- -

|ba1anceCz)=|heigntCz.1efH-height(Z'rightÉd AVL : : insert Ck,v )

1. 2- ← BST : : insert
Ck,v )

eg
22 *

we define the 2 . while z is not NIL do

10

/ -31 height of
an

3 . if ( iz - left . height - 2- right
- height / > 1) then

y
/ \

, , empty subtree is
4 . Let y

← taller child of t

16
, } Yg

2£ ]
4g

-1 . 5 . Let × c- taller child of Y

6. 2- restructure (x.y.tt)
- notice the structural property holds for every

7- break
11 we alias this as

node .

g. z . height ← I + maxi
,
't - left - height ,

"

setHeight From
Subtrees

"

'

we also store the height of the z - rightheight}
=3 9. 2- c- z . parentsubtree at every

node
,

we can

ROTATIONS [OF BSTS]also store the balance .

Let T be a BST with a node z that
( usually we will stone the height ) .

has a child
y

and a grandchild
✗ -

he Oclogn) Then
,
a

" rotation at z with respect
to

:
let n be the height of an AVL tree

y
& ×

"
is a restructuring of T such

with n nodes -

that the result is again
a BST

.

and

Then necessarily he 0409^1 ' # nodes

sub - free references have been changed
°"
]

height
0 : ③ '

at x.y.tt .
"

z
For restoring

balances at AVL - trees , we want

height
1 : ① 2

①
" % the four notations that make the median of

✗ - y ,z
the new root of the subtree :

⑤
height 2 : ! the structural 4

2-

\

÷;
①
→ ↳ preserve

prop
-ty :

/
y

① Right Nation '
" ""

⇒has h=l We want y
to become

µ yy
the roof .③

- 114-12+1 pseudocode similar to left

height 3 : %
.

' '

=p rotation ; see below
1 \

,

'
'

,

' h=l i ② Left rotation ; zcycx .

' h=2
!
,

i
. . . -

.. Fly'

'

-
- - - - . we want y

to be the

In general , let Nch) = smallest # of
nodes of

root . Yg
⇒ # ✗

^
height

h ' rotate - leftcz)

i. y←zrign+
h : ⑤ " "

" " " = " ""> + """ " "

d ' £ " "# T '
""

/
3. g. left

←Pz

4 . Set Height
From Subtrees (z)

5. settleighttwmsubtreescy
)

Thus
6. return y

h 0 I 2 3 4 5 . . .

③ Double - right rotation : ycxcz .

Nch ) 1 2 4 7 12 20 .
. -

we want ✗ to be the

y zNch ) -11 2 3 5 8 13 "

root .

yy A

* can also be written as

we see Nch) -11 is the Fibonacci numbers !

single
-left rotation at y

11
( ie eco)=o , Fci ) --1 , Fci ) -- Hi- " +

F " " i"" )
and then a single -right

→

rotation at z

By a

easy
induction proof , we can

show

( double - rotation)

Nch) + I = Fch -13 ) . ④ Double - left rotation : zcxcy .

In particular ,
we know

we want ✗ to be the Z

\ → f y
Fli ) = ¥01

"
+ Oct )

,

= the golden
ratio .

* can also be written as

root .

'
"
"

✗

Therefore single - right
rotation at y

Nch ) = 01h
"

+ OCD
and then a single - left

rotation at z

Hence
, for any

AVL tree of height h
'

( double - rotation)

# nodes = n z Nch) = 0h
-13

,
INSERT

,

PART 2

'

We now give
the implementation of restructure in the

and so

h z log (Fn ) - 3 c- 01109m) . insert function from
the first part:

restructure cxiy.tt )

4 node ✗ has parent y & grandparent 2-

1 . if y=z- left & ✗ =y- left
11

✗
- y
-
Z

11 right
rotation

2. return rotate-right (z)

,Z
3. else if y=Z - left & x=y - right y

y
,
,

4.
2- - left rotate - left (g)

" double - right rotation

5.
return rotate - right (z)

6. else if y
-
- 7. right & ✗ =y-left y

Z -
y

✗
'

7. z . right ←P rotate - rightly] ,/ double - left
rotation

8- return rotate -leftcz)

117-y - ×
9. else

to .
return rotate - left (Z) 11 left rotation



DELETE SCAPEGOAT TREES
-

" Pseudocode :
" "

scapegoat trees
"

are BSTS such that

AVL : : delete
Cle)

, , z ← Bst :
: delete Ck) 11 2- is the parent of

the

① Each node ✓ stores the size of its subtree:

BST node
that was

removed and

2. while 2- is not NIL do ② v. size ⇐ g. v. parent- size for all nodes that are

3 .

if Clz . left- height - z- right
- height /

> 1) then

not the root .

4 .

let
y = taller child of Z

40

5 . let ✗ = taller child of 9
* example , with 4=32 .

y(break ties to prefer single rotation) 1330
/ + ¥0

,
go

verify that

6. ZEE restructure ix. g. z )
20 p . size ? Zzv- size

1, do not break - continue up
the path & / 2 12

10 for any parent p of any node
rotate if needed . 6,0I

V.

7. settleignttwmsubtreestt) HEIGHT = 0110g n)
8- 2- c- 2. parent "

Any scapegoat tree has height Oclogn) .
RUNTIME

PW-of.at any leaf l C which has size 1)
,
the

' "
Both insert & delete have run- time

parent has site 3 f- by deft of a

Oclogn ) .
scapegoat

tree .

Why?
- height of

tree = Oclogn)

- rotations take
° ' " time

Repeating this argument , the grand- parent
has

- so delete takes 0409 " ) -

size >
, (E)

2

,

and so on -

- tight if we insert / delete
" """ +

As the roof has size n
,

it follows that

level & never rotate . (f)
d
s n

,

CORRECTNESS [FOR
INSERTION]

where D= max depth of a leaf = height -

-

If we restructure at 2- during an

Thus

insertion ,
then de log ,±,Cn)

c- 0409 n)
.

① the subtree is balanced ;
and

PERFECTLY BALANCED BST
② the subtree has now

the height

that it had before
the insertion . -

"

A
"

perfectly balanced BST
"

is one where for any

30

PWIF -
case 1 ;

"

×
"

is the left node node ✓
,

we have

z ,

/ \
go

before ,
before : balanced

- ✗ has height
h -2 before I v. left . size - v. right . size / £1 .

%
, ,

/
lz, yo - go

it had

height h
- iz
/

unbalanced - C has height
h -2

Given any n - node BST T
,

we can
'
is

'
ys Es

n µ y
h" After rotation : build a perfectly balanced BST with the

y
h

f) ±
" "

same KuPs in Ocn) time .

h - I
✗

/ \
2- h - 1

INSERT
Y, / \ N -É; Pseudocode :

scapegoat tree
: : insertion

g. zor
h -2 or h -2 h -2

, , z ← BST : : insert ( Kir)
n -3

h-3

2 . S c- stack initialized w/ z

Case 2 : ✗ is the right child
.

2-

"

h c- before yxyhzn
, ,

3- while p←Z- parent + NIL do

in-11 4. p - size
-1-1

5. 5. push ( p
)

n 1 -h-2 in-1 y
h -1 9 /\ 6. 2- c- p

l \ 7 . while 5. size 32 do
/ '

✗
n -1

g. pc-s.pq.ci"

, in
-2

n -z
n -Zor

h-2 " h -2

g. if p.sizecf-maxip.ie/-t.siz-e, p - right - size} then
n
-2 or h -3 h -3

h -3 to . completely rebuild the subtree rooted

at
p as a perfectly balanced BST

h -Zor

h -3
11 - break

-

z
insert has worst case runtime Ocnl

,
but

amortized runtime 040g n) .



RANDOMIZED BUILT BST HAS EXPECTED TREAPS

HEIGHT ⑦ ( tog n ) A
"

trap
"

is a randomized version of a

BST
,

also called a

"

priority search
•

A randomized built BST has expected height
tree

"

.

0409mi '

; A +
reap

has the following properties :
"

z
Here

,

" randomly built
"

means we take a

① Each node has a KVP and a priority
permutation ( randomly ) and insert items in

p ;

BST Wrt to the
the order of said permutation -

② The +reap acts like a
-

Ioof . First
,
the first item of the perm

1T

KIPS ; &

becomes the not'

* everyone in left ± roots everyone
in right

Then
,
once we

know the root i :

③ The +reap
acts like a heap wrt to the

i - BST of size priority .
B" 't

n -i
* each node stores the item with Max priority

size i

among
all nodes in its subtree

ÉO , . . - , i- i} Ii-11 , . . . ,n
- I } . .

-

Moreover
, eg 10 ☒ the keys

pcfirst item of IT is i ) = ÷ -

4
/ 6 \

14 ☒ the priorities
Thus exp . height

of the tree w/ Perm
" is

41 15 \ Cstored in an array) .

1+(1-1) = 1 + maxi, HCTL ) , HCTIR
) }

- 6 13 18

I 2 3

Now
, define YCTI ) = 2

" '")

,

& Ycn ) = EEYCIT) ]
.

,

16

Then 0

EEHCTI) ] = EEIOGCYCTI))) TREAP INSERTION

( : log is concave ) : when inserting into the +reap , we

£ log CECYCIT))) .
justwe will show EEYCT, )] £ ( n -1173 , which implies
① BST insert ; and

Hense logan-11131=31094+1
?
-

② do
"

fix - up
"

to restore the heap - order property
so
,
let's do so . We note

for the priorities .

YCTI) = 21
+ maxi

,
HCTLI , Hit,z) }

+reap
: : fix- up

- with - rotations (z )

(
HCE) H'"R

)

} ,, z : node whose priority may
have increased

= 2- Max ' 2
,

2

, , while (
y ← z . parent is not NIL & 2- - priority > Y - Priority ) do

I 2 ( 2
"""

+ 2

""""
) 2

. if z is the left child of y
then rotate - rightly)

3. else rotate - leftcy)
= 2 (y(Tie) + YCTIR

))
,

and so +reap
: : insert Chiu)

Ycn) = In ( Zyci ) + 24cm - i -1 )) 1 .
NEP. size

✗ z is the leaf where he is now

1<=0
2 .

z ← BST : : insert Chiu) :
^"

stoned
= ÷ÉÉYci1 .

Now , we show Yn c- Cntl )
}
' 3 . p c-

random (n)

11 change priority of other node

Baze : n= , ⇒ height
-0 ⇒ Y ' ' )=Z°= 1£ & .

4 . if pen
-1 then

5. 2-
'

c- PEP] , 2-
'

. priority ← n - 1
,

Pln - 1) ← z
'

n=o ⇒ height
__ - I ⇒ YCO)

=2
"

=
'12<-1 .

3 6 . fix- up
- with- rotations (z

' )

step : Ycn)= ¥ Citi) 7 . z . priority ← p , PEP] ← 2-

= In Ii
}

= In -n¥ 8 . fix- up
- with - rotations (z)

i=i
RUN-TIME / SPACE

= ncn -1112 E Cn -11 )?
'

Note that +reaps are

as needed . ☒
① BSTS with expected height Oclogn), and so the

EXPECTED V5 AVE
expected runtime of all operations is 0409h) :

'

We know ② have a large space over - head , since we store

I

Echeight of BST )
c- 01109 ^) - the BST

,
and parent

- references & priorities for

each node .

Bit

avg of height of
BST is It Ollogn) !

2
We can show the average height of a

BST is in Own ) .

"
Intuition on why :

3 %) -_ ÷
PC randomly built BST has shape

But

# BSTS w/ shape
= "¥¥:÷÷_

total # of BSTS

= =÷
,

where cckl are the Catalan numbers .



SKIP LISTS
-

'

A
"

ship list
"

is a hierarchy S of ordered INSERT
"

For
'
insert

'

,

we first call
'

getpnedecesors
'

,

linked lists ( levels ) so , . . . , Sh , such that

I

① Each list Si contains the special keys → which tells us which node would precede

& + so
,
called

" Sentinels
"

; the inserted KVP at each Si .

② so contains the KIP of S in non - de're""9 -

"z But
,
we determine whether K should be in

order
,
and the other lists store 0yE

Si randomly ; in particular,
③ Each list is a subsequence of the previous one

,

P( tower of hey K has height Zi ) =liezi .

So 25,2 . -
.
? Sh ; &

④ Sh contains only
the Sentinels .

eg Sz - n -
-

→ a

t
-
0--156-5 → o

Sz
tr l

- N -→ 37 → 65 ¥83 → 94 → *
S
,

i i
t 1

So - so → (23,v) → (37N)
-1165,v) -7179,4 -1183,v)→C9y,v)→ @
'
- -

-

C tower for k=65"

z
Notes :

① A
"

node
"

in a ship
list is any

node in the

j Example :
linked lists of the hierarchy ;

Insertion of key -_ 100
, with the determined tower

② Each node has two references :

height =3 .

-

'

after
'
- points to the next node in the LL

-

'
below

'
- points to the copy of the node in

Si-1

③ The
"

tower
"

of a key K is the set of all nodes

that contain K :

④ The
"

height
"

of a tower is the maximum index i

such that the tower includes a node in Sii

⑤ The
"

height
"

of the ship list is the maximum height

of a tower
,

which is equal to h .

DELETEgetpredecesorsck)
' ÷

To delete in a ship list , we find the key
-

'

,

'

get Pnedecesorscu
)
'

is a helper routine for insert
,

(which gives the stack of predecessors) and then

& delete ,

remove it from all lists that it was in .

2
We also

"

clean-up
"

the stack : if deleting a

key results in multiple lists that store only

Sentinels
,
then delete all but one of them .

Example :

SEARCH
- ' search

'

is very simple ; it just uses get
Predecessors . j Example :

*

deleting
the KVP w/ hey-_ 65 .



Ellen (Si)) = I2i getPredecessors : EC forward steps of Si
) El

"

In a ship list
,
the length of

"
-

During
'

getPredecessors
'

,
the expected number

a list Si is
I
2"

'

of forward - steps within list Si is at

Poff . let Xu be the rv that denotes the

most 1 .

height of the tower w/ hey k .

PIof . Let ✓ be the leftmost node in list Si that

let Ii ,u be an
indicator variable

we visited during the search
.

that is 1 if Xuzi ( ie list Si contains

If i=h ( the topmost
list) then we do not

hey b) & 0 otherwise -

step forward
at all and are done

,
so

assume ich & we reached ✓ by dropping
Then

Isil = I Ii,h down from list Siti .
ueyh

Let w be the item after ✓ in Si .

and so

E[ Isil] = I E[II. u] consider the pwb . we step forward from ✓ to w :

hey u

if w also exists in list sit , , then we compared
= [ ( pcxu> i) )

"
% " ( before dropping down to v7 the search key K with

= It
neyu

Zi w - key .

So , we
must have had Kew .hey ,

else we would not
= ÷ .

☒

have dropped down from v. Thus in list Si we will

Echeight of SL) f tog n -104)
immediately drop down .

'

The expected height of a ship
list is at

most login) -104) .

Puff- let Ii be an incl var s -t Ii =L if

Isil 71 & 0 otherwise .

Recall height
( SL) = h

,

where the lists are

so , . . . , Sh .

Taking the contrapositive , if we step forward from

since So , . . . , Sh . ,
all contain keys , thus

v in list Si , then the next node w in Si did not

h= III.
izo exist in Site .

Then
,
note that by deft -7<-1 & Iit Isil '

In other words , the tower of W had height exactly i.

The probability of this is § ,

because the decision

so

EEI;] E min II. ÷. } .
to expand the tower of w into the list above

If i= log n then 1=27 .

so we use this to

was based on a

"

coin flip
"

.

"

breakup
" the sum .

So we step forward fwm u w/ prob < £
.

In particular, notice
""" -1

Repeating this argument , we step forward from •

Eth] = IEEI;] E E EEI;] + I EEISII ]
i > 0 i=° i3Fogn7 with pwbctz , presuming we arrived at w in the first

fiogn? - l

£ I (1) + I place , so the probability of this happening
is at most

i=o izriogn,
÷

' 14
. Repeating , we see the prob of stepping forward

£Fogn7 + E2"°
g- 30 zjtriogil i times is < ÷ .

I log n + I + It Thus
" °
"

E- [ # of forward steps ]
= EPC# of forward-steps

is

l > I
> e)

= 3 -110g n ,
= EEE El . ☒

as needed . ☒ em

EXPECTED SPACE = Ocn) EXPECTED RUN -TIME OF SEARCH / INSERT /
- :

The expected space of a ship list is in DELETE IS 0110g n)
"
As above .

'

Ocn) .

Pw_of . First , exp .
run - time for get Predecessors

is

In particular , the expected number of nodes

0(EEht¥oFi ] ) ,
is 2n + ocn) .

where Fi = # of forward steps on level Si c- Ollogn) .

Preet . Each list Si has Isil nodes that store

By the previous
results , the exp . time for

keys .
get Predecessors is in Ollogn ) .

Hence expected # of nodes with keys is

once the predecessors are found , all other operations

E-LE.ols.cl]=¥o÷ = ^ .¥oÉ = " -

take och) time
.

There are 2h -12 nodes
that d° "t store "4s

This has exp 0110g n ) .

( the Sentinels on each list so , . . . , Sh ) , but we

have F- Eh] E log Cnt
-1011 ) c- ocn) ,

& so the bound holds .



BIASED SEARCH REQUESTS SPLAY TREES
-

'

Splay trees are BSTS where after every

STATIC SCENARIO
operation , we apply zig-zag

or zig - zig rotations

-

In the
"

static scenario
"

,
we know beforehand

how

( and perhaps one single
rotation at the root)

I

frequently a key is going to be accessed .

So the accessed item is at the root .

'
'

key A B C ☐ ⇐

2
Here ,

2 8 1 10 5
①

"

zig-zag
rotations

"

are just double

access - freq
access - prob 2126 8/26 426 1%6 5/26 rotations ; we do these if the

Terms :
"

z - p
-g

' '

path
contains a

left

① "

Access frequency
"
-

amount of times ↳
& right

child ; &

is accessed ② "

zig - zig notations
"

are applied if the

② "

Access probability
"
- proportion of accesses

"

Z - p - g
"

path contains two left or

for a key two right
children -

In particular, we want to find the optimum

←
a zig

-zig
assignment of keys to locations ;

rotation .

ie the assignment
that minimizes

exp.accesscost-tpcwant-oaccesskl.cat/-ofaccessingk)+-Zhey K

DYNAMIC SCENARIO

Here
,
we do not know how frequently a key

is going
to be accessed , so we cannot hope to

build the best - possible data structure - INSERT
'

z
However , we can

still change
the data structure Wh"

- '

pseudocode :

we have accesses , to bring those items that were

recently accessed to a place
where the next access

will be cheap .
- if we access an item

,
it is fairly likely we will

access it again
soon

-

"

temporal locality
"

IN A
MOVE - TO - FRONT /MTF HEURISTIC

LIST
" The MTF heuristic involves moving the most

I

recently accessed item in an unsorted list to

the front .

Example :

Zig
-

Zag zig -zig single rotation
done !

"

z
The heuristic is

"

2-competitive
"

:

it takes at most twice as many comparisons
that would have been taken using

the

optimal static ordering .



RUN-TIME ANALYSIS BINARY SEARCH REVISITED

"
The amortized run -time of insert is

÷

,
we cannot do better than binary

0110g n) , where n is the size of the

search .

- asymptotically . comparison -
based

tree .

.

- -

s

?⃝ z But, we can do a bit better ;

Roff . For a splay tree S
,

let the pot. func . ,

- shave constant

loci)= Ilogcnii
'
) .gg But

,
we can

do a iot better :
&

] drop comparison
✓ c- S based

where nv= size of the subtree rooted at v.

y We can
do even

better !

Clearly this is a potential fine
Cotto )=0 &

ANY COMPARISON- BASED SEARCH TAKES
Olli) > o - int" > I V-i.ir ) -

Insert has three phases
: r(log n) TIME

① BST: : insert ; "

we want to prove
a lower bound for

② Bringing up
the node with zig -zig

'

searching .& zig-zag
rotation ; &

É Any search that is comparison
- based among

③ Doing the ( last ) single
rotation .

n elements takes erclogn) worst-case time ,

#f: ① increases 0 by at most 10g n .

pnyof . let the nodes in the path from t
+°

even if the elements are sorted .

the not be z ,
z , , . .

.

,
2- d ,

where 2-D= root
.

PIJ . Fix an algorithm, and look at its decision

After adding z ,
the size of

the subtrees

tree .
We are given items

at al, z , , . . ,zd
increase by 1

,

whilst it is
,, :× ,

unchanged at all other nodes . ← \,
Xo
/
×
, ,Xz ; &

u :X
, ii. ✗2 we search for K .

So
,
the contribution to $ only changes

at

t → ← →

z, , . . ., zd ,
and in particular .

. .
. . .

- . .
- - -

before
after before

+ , f nzu
, ,

fished- we want to show we have a lot of

nzu = Nzu
(accessible) leaves

.

Thus before
,

In particular, we have at least n leaves

after
) - loglnv

DO = [ logcnv ( one for each Xi) -

✓ d
after before

,)
Thus

,
the height is 7108cm c- I "°g^) -

after
) + Illogcnzu ) - loglnzu= loglnz

my
U= '

we can also note

before weight ? flogcn)) -

E 0 + Clog nzu
, ,

- log nbetne )
" = ' th However

, we also have an -11
"

not found
"

after before leaves , corresponding to

+ log nzd - log n

Zd
KEC-0

, Xo ) , kecxo,✗ ,) , . . . ,

he ( ✗n , too ) .

before after before
before

- log nz
,

"

= log nzd + 109 " zd - 109 ^zd
z
In fact , we can

show the height > Hogan-1117 .
I = PIT. In particular , we now show

c- log n # of leaves 32in -11
as needed . ☒

(and so height z Mogan
-1117 ) .

# let 0 ;
be a Zig-zag / zig

-

zig
rotation

To do so
,

we create 2h -11 instances

that moves 2- two levels up .

befe
, - z .

✗
☐
< ✗

,
C ✗

z
C - i - E ✗

n - 1 .

Then

gyagteggj ,
- ☒before Oj ) t 31091^7*+9-310947 Searching for ✗ i could result in the possibilities :

✗0 , ✗ 1 ,
✗
2 , . . .

,

✗
n - I

Pioof . See TB .

Searching between ✗ i :

Mainpewof : we finally show the amortized run -

( Xo, ✗ , ) , (41×2) ,
- .
.
.

(✗
n-2.

✗
n-1)

time of
insert is 0409 ^) -

searching outside :

note f-
actual

( insert) =
ltd

,

where
D= depth

^

c- so , ✗o ) ,
Cxn- , , +

N ) .

Claim : no two reach the same leaf .
-

root to 2- .

at the seq of operations
in insert be

Pnyof by contradiction .

Assume 7-kik 's n'th
"

,
s -t

× we reach the same

Oi , Oi-11 , .
. - ,
Oi-112 '

leaf .
=Y Then ktxi Cas otherwise title

"

)
,

BST : : inset Q
so it follows the leaf must be

Then
☐ a

'

not found
'

.

Dcfcinset)
7

=
( i+R) - Olli

- 1) leaf reached w/
kin"

.

= (04-1-04--11) Consider the above example .
j=i In patiala , we have Xbfk

'

,
k
"

< Xa
,

and so on
.

= ÉSQCO;) Since kik
"

one
'

not founds
'

,

there must exist an

j=ilittle
,ogn

+
( ziogcnii

'

) - ziogcnzj
- "
I -2) + ( 310GHz I -31°9'7''

""" '

1) ✗ i between an
'

& k
"

.

Thus
n' < ✗ ich

"

w
j=i" ¥EÉ ¥É

spoil
zig-zag for some ✗ i.

( i -1121
, - 310g Cnz

" 't - 2112 - 1)
Then

,
a search for ✗i would reach the exact

C- logn + 310g Cnz
same leaf , which is a contradiction since the

£ log n + 310g n - 212+2 ,
leaf is a

'
not found

?

and so

( as Rxr¥7 )
1-
"that ( insert) + ☐focinset)

E Cltd) -1410g n
-212-12

c- 410g n
-14

c- Oclogn
)

as needed .



Chapter 6:
Special Key Dictionaries
OPTIMIZED BZN SEARCH INTERPOLATION SEARCH
"

Normal binary search takes "

Interpolation search
" assumes that

_cn)=2_-c%)=2l°9cnÉ ① we are given
an array

AIO . . -
n -1] of number

But can we do better ? in sorted order i
&

② we want to search for the number K
.

"

Pseudocode :
2

- interpolation
- search

binary - search
- optimized

(Anik )
2
Idea : y

1 . leo
,
rent

,

✗← ° ÷¥/4É
11 X is a bool var that tells us whether

we're in the left subarray q

z .

while Cllr ) bin -search :
m=L¥]

3.
ME L ) = e+L'zlr-e)I

4 .

if [Acm]
Ch) then l←m+l

Consider search ( 100 ) .

5. else r←m ,
✗← I

⇒ bin- search searches naively in the middle .

g. if Choate]) then
⇒ interpolation search searches based on the

return
" not found, bw Atl

-1] and Ace]
"

7- .

g. else if (21--1) or ( KEA'll]) then
"

endpoints
"

of the keys , and interpolates

g.
return

"

found at All ]
"

where the hey would be
-

to . else return
" not found, bw All] & All"]

In particular , we notice that

A- Er ] - Ace] = So (the
"

distance
"

between nuns )
.

; we claim

① this algorithm
terminates : Then

K- Atl] = 60 .

② this gives
the correct answer ; &

So
,
we should search for 100 roughly ¥0 = } in the

③ this uses at most M0gn7 -12 comparisons ( without X)
,

range .

which is about Mogczn-1,17+1 comparisons .
More generally , we search at the index

,

④ with the X
,
this uses E Tlogczn-1137 comparisons ,

Atr]

so this is optimal- e +
- Cr-e)

A[l] - A -10] Yw

Prof . See TB .
start index TFindices in range

and otherwise
,

the search works like bin- search .

'

Pseudocode :

interpolation
- search CA.n.li)

1. LEO
,

ren - l

2. while ( ler )

3 . if CKCA 'Ll] or K> Atr] ) return
"

not found
"

4 .
if ck=AEr] ) then return

"

found at Acr]
"

5. mc-ei-LE.IT?m.?-eicr-ey
6 . if CAEM] ==h ) then return

"

found at AEM]
"

7. else if CAEM] Ch) then dem-11

8. else rem -1

✗ we always return from somewhere within the

while loop.

1-
"V9 OF INTERPOLATION SEARCH IS

Ocloglogn)
" "

we can show under some assumptions .

Ta✓9cn)EOC1oglogn
→ see next page for proof under a realization

.

1-
worst

OF INTERPOLATION SEARCH IS

Ocn)
'

We can show that 1-
worst

of interpolation - search is

bad !

eg
Consider

0 I 2 - . .
8 9 11

"

.

and let's search for 10 .

Then Atr] - Ace] is huge ! ⇒ so ma l -10=0
.

Then our next lower bound is 1
,

and so on , and

we look at
every element !

"

2
In particular ,

yworstcn)eO



OPTIMIZED INTERPOLATION-SEARCH

Pseudocode :
'

moreover
, avg # of probes

£ 2.5 '

interpolation
- search -modified ( Ain , h) idxlh)

I

1 . if CHCAEO] or k > Acn-1] ) return
"

not found
"

pngog .

2 . if ck=AEn-1 ]) return
"

found at index n-1

"

" " " "
" " """ ""

4 . while CN C- ( r -l -D
> 1)

Assume nuns in Aceh . . .

r - I] have been chosen

5. meet fh-A • Cr -e - 1) 7
Acr] - All]

6 . if CAEM] Eu)

We want EC# probes)
£2.5 .

7. for 4=1,2, . . .

g. eem + ch-1) FTNT
,

r' c- mind " m -1h
7}

Then see
that

g. if Cr'=r or Acr
'

] >b) then rtr
' and break

p ,# probes > 1)
=/
,

PC# probes > 2) £1 ,
&

10 . else . . .

p , # probes > 3)
= PCA [ id of 2nd probe] EK )

11 . if ck=AEl7)
return

"

found at index e
"

12 . else return
"

not found
"

= pcidxch) > mt Trail )

(where idxcu) is a rv that is the largest
i 4 Ati]±h )

=m + rn Im-125h r

E Pclidxck) - m / 3 NN )ear

= P( lidxlu)
- Ecidxck)) ) >

t )

T T

① we compare ② but we also
and we keep going . hopping by E V[id] ( vex )=Vare×D.

here --
-

probe here
, if

Fern each time until a

ca '

probe
' )

penny < h .
- A[m+×Fn ] > u ; or Chebyshev
- mtxrrn is out of bounds .

Then
,
see that offsetb) = idlh)

-l
,

&

So : the idea is we use more

probes
P( offset

-(4) =i) = P( exactly i of the r -e -1 randomly chosen

to guarantee the subway has site own ) .
numbers one the )

"

If Tcn ) = # of comparisons on n numbers
,

then
Then Aee] Air]

Tnj-Tny-lt-ofpnh.es#- p( one number ✗ is e- b) = P(¥¥l| )
✗ in here

where n' earn .

= k-A
A- Er] - All]

and so =p ,

.

(ie offsetch) c- Bin (Nip)) .

Ploffsetck)=i ) = (F)pictp)N-i
Thus

- Ecoffsetchl] = Np
• =L Eidxch ) ] = l+Np

° Vcidxch)) = Vcoffsetcu))
= Npcl -p>

± ¥ .

So Vcidxckl]

PC# probes > 3) E T f ÷
,

and in general
PC# probes 3h

) £ ¥2,2 .

So

EC# probes )
= h.PL#pwbes--h )

so

= EPC# probes > h )h=c
→

HIT ¥2

= 2 + f- §? = 2+4%2.5 . ☒⇒i:÷:÷.÷
"

'
'

4 Therefore ,

PIof . Specifically , we prove

Tav9Cn) I 2.5 flog log M
for n > 4 .

Let's consider LEI
-1
sit .

i
"

s n f 22h
-

⇒ 2h
"

< login) I
2h

⇒ L - l < log login)
± L

⇒ Tioglogcn)7 =L

Observe that 5ns NzÑ = 2+2%1=22
" "

⇒ log logcrrn) ± L - l = rioglogcnl? -1 .
Proof by induction

, and we only consider the step :

1-avg (n) E T"9Cn
'

) -12.5
,

n' c- rn

I 2.570g login'M + 2.5

E 2.5 flog 10g Wn)7
+ 2.5

E 2.5 ( Mog log n7
- 1) +2-5 = 2.5 Mog log n7 ,

as needed . ☒



DICTIONARIES OF WORDS
PRUNED TRIES

WORDS
Idea : a pruned

trie is such that we stop
-

"

words
"

are strings; ie an array of
-

"

adding nodes as soon as the key is

chars in some alphabet E.

eg
E- icon }

,

I = ASCII , etc unique .

2
In particular,'

"z Note words have arbitrary length -

① a node has a child only if it has two

We sort words le×i#hia"y : descendants ;

② we save space if there are only a few

Cia 't ' f' i 's 'h

do' r ' n ! ! ! long bitstñngsi
&

" " "
"

"
"

③ we can stone infinite bitstrings
( real numbers ! )

d.oirin:e:r :
-

4 Comparing strings
( we denote this by

'

stamp
'

)

takes 1-
worst

= Olminilw,
1. lwzl }) run-time .

TRIES
-

A
"
trie

"

is a dictionary of words .

It is

"

prefix -free
"

- no string is a prefix of

-another .

z
Note that we must store the full keys .

This is satisfied if
'

4
Also note that pruned

tries are the recursion trees

① all strings have the same length;
or

② all strings
end with an

"

end - of-word
"

character

of MSD - radix -sort
.

' $
'

.

PRUNED TRIES FOR REAL NUMBERS
*
n '

we can use pruned tries to store infinite length numbers
,

eg
real numbers :

* note : items ( ueys) are only stoned at the

g
"
chain

"

has
"

just enough
teas. precision

"

OPERATIONS ON TRIE TAKE 011×1)

TIME
"

Note that in a
trie

,
search , insert & delete

all take oclxl ) time .

NO - LEAF - LABEL TRIES

'

Idea : we don't stone the actual keys at

1 -

the leaves .

"

2
The key is stoned implicitly through the characters

along the path
to the leaf .

3
Hence

,

this halves the amount of space
needed .

ALLOW - PROPER
- PREFIXES TRIES

-

Idea: we permit storing words at interior vertices
,

so we can
accommodate words that are prefixes

of others .

9
indicates the value of the

'

flag
' which says whether the

node stones a value .



T IS A PRUNED TRIE THAT STORES n

RANDOMLY CHOSEN INFINITE BITSTRINGS

⇒ Te×P(search (B)) = Oclogn)
"

As above . ( B is an infinite bitstring) .

PIF - Say we stone B
, , .

. . ,Bn , and search for B-

Then , each bit of each Bi was chosen in

40,1} uniformly .

let the indicator variable

I ,
= it .

if we compared Bci] to someone

10
,

otherwise .

In
particular, &

# comps for
search (B) = III.

i=o

Then
,
let

I,µ=
I

1
,

we compared Bci] w/ Bnei]

LO
,
otherwise.

Then

P(Ii,h=1 ) = PCB & Bu agree
on first i bits)

= (E)
i

Csince bits of Bi chosen

Hence randomly) .

E[ II.u] = P( 7-iii. 1) = (E)
i

,

and so n

ETI;] E En[ET-i.ie]

zi .'

¥÷÷:
=
"

But since EEI;] £1
,

hence EEII ] c- mind ! Ii }
,

and so so

E[¥oIi ] E OCD + logcnl.

The rest of the proof follows
like the ship- list

proof .



COMPRESSED TRIE PREFIX - SEARCH
•

Here
,
we compress paths of nodes

Given ✗ & a compressed trie
,

with only one child .

is ✗ a prefix of a stored word ?

Each node stores an index corresponding
Can also be done in Oclxl ) time .

to the depth in the uncompressed
trie .

z This gives
the next bit to be tested

MULTIWAY TRIES

during a
search . '

These are used to represent larger alphabets .

* index
: which

bit of ✗ to compare

when
searching for × .

£ main question
: how do we store the children?

I
- need to find ( during

search 1×1)
0

the child that stores ✗ Ed]
.lo

EE
'

In particular , we know every
node has 32 children .

-

3 Options :
"

g
Thus

,
if the trie has n leaves

,
then it has ① Array

¥±÷EiEn -1 internal nodes
,

and so

+otal#ofnodes£2→ references to children

② List
'

6
Hence the trie takes Ocn) space ,

whereas other

'¥→1¥→ . . .

tries uses space
that depends on

the length

③ Dictionary
of the words stoned .

*
if we only consider the space

taken by the

nodes .

eg
Consider

0 O o o o o o o
° |É

o-o-o-o-o-o-o-o-c.TK
So

space is much bigger in a pruned trie .

SEARCH IN COMPRESSED TRIES

Consider : • search ( 001$ )
- no such hey

• search ( 0000$)

- needs to strcmp the

leaf¥v - then fail
•

search (110/5)
- see AEO] & AEZ] (we ship
All] ! )

- need to do strcmp
at the

leaf

• search ( 1$ )

- needs to fail with
"

too short
"

- since AEZ] DNE -

'

£ Pseudocode :

Run - time : 0 (1×1)
,

where 1×1 is the length
of the word to search .

INSERT IN COMPRESSED TRIES
'

Idea :

① Find where it should be ;

② Modify trie to put it
there .

Details are messy
& omitted .

Run - time : 011×1 ) .

DELETE IN COMPRESSED TRIES

'

Run - time :
011×1)



Chapter 7:
Hashing

HASHING WITH CHAININGDIRECT ADDRESSING
"

idea : use lists to resolve collisions .

Assume each key
K is an integer

with 01h 'M '

' "

z
Each slot stores a list -

Then
,
we can store the le's by

*

using an array
A of size M that

we use the

stores Ch ,v) via AEK] ← V. MTF heuristic

M -z
M - c

when inserting .

cat

t
dog pig

"

search . insert , delete have Oct) run -time .

But the total space
is 0cm) .

HASHING
'

We can do direct addressing after modifying
z
Run - time :

Cie
"

hashing
"

) the key . ① Insert : Oct) + time to compute
um

"

z
Assumptions : hash - value

- should choose hlk) so time to

① keys come from a universe U

compute hch) is Oct)

- typically , U integers,
101 finite

② ¥ILdeIIe: worst - case ⑦ ( length of 1- Chew] )

② size of hash table
,
M

,

is pre-determined ↳ this is Ocn) in worst - case

③ we use a hash function h : U → ÉO , . . ;M - I } - we search in Tihar)]
,

which is a list

that
maps indexes in U to an index RANDOMIZED VERSION OF HASHING

in the array
"

we randomly pick the hash function among all

possible hash functions uniformly .

2
This is called the

"

uniform hashing assumption
"

.

eg U=Ñ ,
M=l '

, heh ) = kmod 11
T

slot T[i ]
'

3
Under the uniform hashing assumption ,COLLISIONS

,
collisions occur if we want to insert

E[lengthofbucYe=^mChiu) into the table
,

but T[ hch)] is

list at Tci ]

already occupied .
'

z
Solutions :

Here
,

"

i
"

is called the
"

load factor
"

.

PIof . Note Pchck)=i ) , for some hey k & slot i
,

is

Plhch)=i)=m .

We have n keys - - - -7 In .

Thus
,
the

exp . run-time for anunsuccessfulseerct.is
001 .

However
, if he is in the dictionary , then

E[length of bucket hch) ] = I + f 1+0 .

¥ ¥
his in

the bucket
Hence

, under uniform hashing .

search.de/ete-ahetime0Cl-&



REHASHING LINEAR PROBING
'

Here
,

we define'

We choose 4 by choosing M .

I

hCh,i)=ChCk)-i)modM
So

,
as n increases , we increase

M so that &

stays small . 37

,

\ '
1
,

z This is called
"

rehashing
"

. consider insert 137) .

⇒ heh)=4 .

Probe seq
is

( 4 , 5,6 , 7,8, 9,10 , 0,1 ,
2,3 > .

III
Linear probing

builds big
"

clusters

"

of elements .

PROBE HASHING
OPERATIONS OF

-

In the array ,

① To detente an key K
,

"mark
" it as deleted .

② To se@ch.we
"

If with rehashing we keep TE -04)
,

then

- follow
the probe sequence

:

- ignore any
"

deleted
" entries ; &

all operations take Oct ) time.

-
continue until we find K or

NIL .

"

y
Moreover

,

③ To insert , we

space=M-n=±-n=°(^ - follow the probe sequence :
and

- continue until we find a
vacant spot

( ie empty / deleted
) or we reach the end

HASHING BY PROBING

of the probe sequence
.

'

We want to avoid lists
,

since they have *
this is called the

"

lazy deletion
"

technique "

massive overhead .
-

; we also track how many
elements are

" deleted
"

"

•z Idea : we allow keys to use multiple slots .

if this gets too large , we re -hash .

-

j Pseudocode :

TT
alternate

2nd alternate

hey he wants
option

to be here

3
For each hey ,

we have a

"

probe sequence
"

Ch(4,0) , hck , 1) , . . .

,

hck
,
M - 1) >

J[indexof°pti°hey

QUADRATIC PROBING

Here
,
we define

hck.il-ch.ch/-c,i-Czi2)modM&
for constants c

, .cz ,
which are picked so the

probe sequence visits all slots in the hash

table.



DOUBLE HASHING CHOOSING HASH FUNCTIONS
" "

Double hashing
"

uses two hash functions

MODULAR METHOD"

ho
,
h

, ,
and we define

"
Here

,
we lethlk.it/--ChoCk)-ih,Ck))modMfhCh)--kmodM.@

where we usually pick M to be prime .

/t *
don't pick

M=2m or M -40m !

Requirements : MULTIPLICATION METHOD

① hick) -1-0
' "

Here
,
we let

② h.cn) is relatively prime with M :

③ h
,

& ho should be independent . nw=M÷É¥
eg hock)= kmod

11
,

h.ch/=Ll0CPk-L4k) )) -11 ,

e=r¥ where

① M = 2k for some
1<20 ; &

CUCKOO HASHING
② A c- ( 0,1)

( preferably an
irrational) .

"

In
"

cuckoo hashing
"

,
we use two hash

tables & two hash functions, and promise
HASHING MULTI- DIMENSIONAL

DATA

key K is always at To[hock) ] of Tich,lh)]
.

Suppose
we wanted to hash keys

that are

eg
Mill

,

hock) = kmod 11
,
h.ch/=Llll4k-L4k)))

words ( ie in -2*7 .
'

z
In particular, seared & delete have ° ' " W""

"

; we can

"

flatten
"

the string w into an integer :

case run-time .

eg A. p . p
. c. E → ( 65,80, 80,76169 )

( ASCII )

z Pseudocode for insert :
→ 65,24 + go ,z3 + 80122+7612+69 ,

12=255

We can
then combine this with a modular hash

function ( ie hcw ) = f- ( w ) mod
m) .

To compute this in oclwl ) time
without overflow ,

we use

"

tyre
" and apply

mod early :

ie

(((((((6512+80) modm)R
-180) modm)R-176)modm)R

-169) mod M

RANDOMLY-CHOSEN HASH FUNCTIONS

There are lvlm many possible hash functions ,
&

COMPLEXITY OF OPEN ADDRESSING

ideally we would choose randomly amongst
them .

STRATEGIES
' Note :

z
But then we cannot compute the hash value

quickly !
"

"

Idea : Fix a family 7L of hash -functions that are

easy
to compute , & choose uniformly among them .

'

Thus
,
all operations have Oct ) expected run-time

if hash function is chosen randomly & 4 is

kept sufficiently small .

j But for a fixed hash function, the worst - case

run-time is 0cal
.



UNIVERSAL HASH-FUNCTIONS
'

For analysis, we want uniform hash - values ;

ie

PChCk)=i
But we also need small probability of collisions

Cie
"

universal hashing
"

) :

in other words .

P(hCh)=hCh'))EtVk_m
CARTER- WEGMAN HASH FUNCTION

The
"

Carter - Wegman hash -function
"

is defined to

be

ha,b(b)
= fqbck) mod

M=(a.k-bmodp)mod
where KEZP , p is prime , & a -1-0 , b are chosen

randomly .

We claim fa
, ,

defines a permutation of Ip : ie

fa.blklt-fa.h.ch ' ) for ktk !

PIF. Assume fabch) = fabck
' )
.

⇒ Cahtb) % p
- Cah

'
+ b) %p=o

(%pc⇒modp)

⇒ ahtb - ah
'
- b =p

0 ( =p (
⇒ ( modp) )

⇒ ack - h
' ) =p 0

Since a c- ii. .. . .pt }
& h - k

'

c- i. - Cp -11, . . . ,Cp -17 } , thus

k - h
'

=D
,

ie k=k
'

,
and we're done .

Be

CARTER- WEGMAN
FUNCTIONS ARE

UNIVERSAL
"
see that

P(ha,bCh)=ha,bCk'))\-m
Pw_of . Assume ha.h.ch) = ha,bCk

'

) for ktk
"

c- Zp .

We know that

fqblk) =L fqbck
' )

¥ ¥
'

but ✗% M = ×
"

:/ M Cby deft of
ha
,
b) .

Thus

✗ - ×
'

Im 0 .

How many
such

" bad
"

pairs IX. ×
'

) could

there be in Ip ✗ Ip ?
I t to

e-
✗
'
is one of these

,

but ✗

'

IX.

Hence
,

×
'

is among FIM) - l numbers
,

and so

# choices for ×
'

is f
.

Fixing × , it follows that

p
- I

# bad pairs tp.my__
choices for choices for

Therefore
✗ ×

'

P( ha,b(b) = hqblh
') ) = P( (x ,x

'

) formed a
" bad

"

pair)

= I Plfabchl -_ ✗ , fabch
'

)=✗
'

)
bad pairs xx

'

- _ -

= I P( a -- ch - k
'

) "c× - ×
'

) -1. p ,
b=cx - ah)%p )

bad pairs xx
'

= I
badpa.rs ×,×

,

' É

=

1-
. # bad pairs c- tm

.

☒
pcp -1 )



Chapter 8: 
Range Search

'

Idea : QUAD-TREES

① we are given
two keys ×

,
E ✗
z; &

For
"

quad - trees
"

:

② we want to get all items between ×
,
&

① stores points
in 2

✗
2- ② we assume

the points are in a

"

bounding box [0,2° ) ✗ [° 'd]

z
Sorted array :

5 10 12 17 23 32 45 62 71 . . .

eg
[0,16) ✗

[0,16)

> range
search (13,36 )

① Search for ×
,

→ will tell us where ×
,
would be

"

between
' '

② Search for ✗
2

→ likewise .

③ Repeat everyone
in between .

*
this approach

works for tries
,
Sis

,

etc .

j Run -time : Oclogn + s ) ,

where
"

s
"

is the
"

output size
"

.

2nd

MULTI-DIMENSIONAL DATA quadrant 1st
'

z
How to construct ?

"

, idea :
"

points
"

instead of single
values -

① split
the ing

box into ^"
""""+

ie ( Xo , ✗ , , . . . .
✗
n
) quadrants;

* *. .ms#a.ng.niiaen
:

*
we will assume

all data are integers .
③ Repeat at children until El point

2 Range search then looks like :

left in all regions .

✓
the

'

range
'

} This is called an

"

orthogonal range
- search

"

:

① we are given
a query rectangle

@Ñ=××yy & Note : points on the split line go
above /right -

② we want the points
in A- '

'

y
Alternative depiction :

y
"

position
"

of

quadrant

2
we do not store

empty nodes

① we do not need to store the
"

sub- areas
"

( we always cut in half )



OPERATIONS OF QUAD -TREES RANGE - SEARCH IN QUAD - TREES

"outside
" node " "

boundary
"

node :
'

, I
:

' "

,
Idea :

region
disjoint from region overlaps with A

A

→ stop search

/
→ continue

search

a

0
7g

if boundary node & contains a
"

inside node
"

:

point fully
inside

z Run - time :
single point, we just check

A
① No good

bound depending on n :

explicitly → all points in

say it is Octree height) . z Pseudocode : range② we can only

HEIGHT OF A QUAD-TREE

I But we have no bound on the height

either !

"
→ "%"

"""" "

; -
- iii.

?⃝ = - I
-

i
-

① checking
"

RNA =p
"

is Oct )
.

"

However
, we can bound the height if the

2
- since we use rectangles -

coordinates are integers :
'

, Rue :

specifically in the range 40
.
. . .

.

I - I } .

① We have no bounds in terms of n or s .

Then the height of the quad - tree is El .

② Only thing we can say
:

PW-of-DI.g.gr :
let's look at a quad - tree in Id .

run - time c- 0C size of quad tree )
.

8 12 14
: 24 26 28

:-. ! n
,

OTHER USES OF QUAD-TREE
p 16

32
° We can use quad

-trees to store pixelated images :I

[0,32)

- -
[ 16,32)[ 0,16 )

☐

/ ?
. .

. .

? ?
. .

But we can also represent the points in base-2 :

This is a pmned
The height of a Id quad

- tree of integers
in i. 0, . . . ,2l-1 }

bi¥ÉÉE the length of longest bitstñng =L

This argument generalizes to higher dimensions ceg 2D
,
ie quad

trees )
'

In particular, a quad- tree is a pruned trie
3

where we split by two keys in parallel .

The expected height of a quad- tree of randomly

chosen points is Oclogn
)
.



Kd- TREE
*
D=

" dimensional
" RANGE -SEARCH FOR Kd -TREES

Idea : '

Pseudocode :

① similar to quad - trees
; but

② we split points in half ( rather

than the region) : comparison to split the

points .

s we can generally

☐
→
omit this .

→

③ Repeat ② until I point left : &

④ Alternate split by ✗ &
y .

*

nearly identical to that in quad -trees .

z
Note : we always split at Quickselect ( LZ ) ) .

Run -time : OC # of boundary nodes + s )
.

ie the median if n is odd , & the upper
median

y

output size
if n is even .

3
Then , we see that

j we assume the points are in
"

general position
"

:

#ofboundarynodesE0CFno two ✗ coordinates are the same ,
nor no two

y coordinates are the same. so

-

y
under this

,

each split leads to run-time=O(r
① LL) points in

the left child ;
&

Puff .
② 5127 points in the right

child .

How many
nodes

g Therefore , the height is ° "°9 ") '
have an associated

region
that intersects

OPERATIONS OF Kd - TREE

one of these lines ?
'

Leary : Oclogn)

Insert/de basically impossible !

However, we can build the whole thing , given

all n points , in Ocnlogn) expected time :

① Find the median : &

If +he point does not intersect , then

→ ☐ ( n ) expected either

- it is an
outside region leg Ps ) :

or

② Reverse in children

→ site = I each . - it is an inside region leg p, ) :

ie

# boundary nudes f nodes whose associated region

intersects one of lw , l⇐
,

en ,

es .

Cet Qin) = # of boundary nodes .

Max that intersect a given
line l .

Let Qcnil ) =

ud - trees w/ n pts

This is independent of e csnift points
)
,

so only consider

whether I is horizontal /vertical
→ Qvcn) , Qncn) .

Then

Icnl E QCn.lu) +
QCn.lu ) + QCn.de

) -1 QCn.es )

E 2QvCn) + 2QµCn
)
.

So
, if we prove Iucn / E Own

) ( and symmetrically

Qncn) C- Own) ) , we are done .

See that Ouen) =
# of nodes whose

associated region intersects

a vertical line l
.

Consider making the hd- tree :

-

ycpi interse
I \

☐ ☐

"" ""

÷÷÷÷
.

t tr

hd - tree nd- tree

with 44 with 44

points points

Therefore
Iucn) f 2Q✓(

44) +2 .

This resolves to Own) , as needed . ☒



RANGE TREE
RANGE - SEARCH

steps:

① A range
- search in the primary

tree (with a small

twist) by the ✗ - word .

- search for left boundary ( gives a path

p, )8 - search for right boundary (gives a path

Pz)

y
boundary

node

con the paths )

outside node

→ Cleft of p,
or pz)

/
→ nobody in

subtree in

the range

\ \ P2

1
O

p , I
"

,
Idea : inside node ( between p, & Pz)

① We store points in a

"

primary tree
"

T "
- aid descendants in range

a BST by the ✗ -coordinate . - this has run -time 040g n + s )

( to get
the classification & to report if

( This is a scapegoat
tree ) .

wanted )

② For every
node in

T
'

we have a
BST

② Return a, , the boundary nodes & the top -most

associated with it . inside nodes .

③ For the bay nodes
,
we explicitly check .

- let Pcvl be the subtree at v.

- Tcu) stores Pcv) in a balanced BST
'

b
] ④ For the inside nodes

,

the
y
-coordinate .

- all points are in range
with ✗ -word .

- so
,

we run a range
- search on

the
associated

2 stare : Ocnlogn )
tree by the y

-word .

( assuming primary
tree has height Oclogn ) . )

PIof- How often is each point stored ?

- once in the primary
tree

- once in each associated tree of each

ancestor of ✗ -

C there are 040g n)
such ancestors ) .

i. Each point is stored 040g n) times

: . space
= Ocnlogn) .

*
this is tight .

DICTIONARY OPERATIONS

Search : just search the primary
tree .

- balanced Cso time = Oclogn ) ) .

2 insert
:

① insert into the primary tree
, say at node ✗

② at all ancestors of ×
,

insert the point into

z Run-time : 0 Clog
-
n + s ) .

the associated tree .
- we do one range

- search in the primary tree

- we have oclogn )
ancestors , and each insert

Coclogn ) )
takes Oclogn ) time

- we do range searches in Oclogn)
associated trees

- thus time = 0110g'm ) . ( each of these takes Oclogn )
time

③ if the primary tree is imbalanced , rebuild that

→ OCIOGZ ) time
subtree & all associated subtrees .

- report all points in range :

- we can show the amortized time for insert

-

→ boundary nodes in primary
tree

is still 011092h ) -

°"°9
"" / → boundary nodes in same associated tree

Lz Det : similar to insert.
we searched in

OCS)

- takes time = 04092h) . - only need [→ inside nodes in some associated tree

to report
HIGHER DIMENSIONS
-§
"

, pÉgwh
: 0409dm + s )

µ. .; space : Oclogdn . n )
2--word

y
-word

✗ -word



3-SIDED RANGE SEARCH
-

idea: return cx.gs with ✗f- ✗ ← % and
Y > Y

'

-

PRIORITY SEARCH TREES

; Naive approach : Range
- tree ' '

Idea :

- runtime of range
- search = 0-(1092^+5) ① store y

- coordinates in
"

heap - order
"

-

space
= ① ( nlogn) . ② split in half by ✗ - coordinate

ASSOCIATED HEAPS - split - line
coordinates : use median ✗ -coordinate

among
the points in subtree

Idea :

① primary tree
: balanced BST

- so height = Mogi

② Associated tree : bi#hap
③ stage : Ocnlogn

)

z Range search :

① Search in primary
tree as before ; &

② In associated heaps :
search by g-

coordinate

in Oct -1s ) time .

③ Ruf: Oclogn -1s ) .

z
Note : ✗ - coordinate

stored for splitting can be different from

the ✗ - coordinate of the stored point .

R-ange-search-h.me
: Oclogn

-1s)
.

place
: Ocn) .

SUMMARY OF 3- SIDED RANGE SEARCH ADTS

"

summary :

associated Cartesian priority search

heaps
tree tree

(good ! )range
- search coptimal ) ( height is bad )

.am#an-*-.
"

, idea
: use a trap,

but use ✗ - coordinate as the

space

hey
& the y

- coordinate as the priority .

( bad ! ) good ! )
(good ! )

g.ns..am/.,..g.,..na,n..,...g2SP-ace:OCn)Camort. )

; Rangeh
: case)ÉgÉy×w÷%① Do BST : : range

- search (✗ ' ' ✗2) +0
scratch

+ Ocn) time

get boundary
and topmost

inside nodes .

② For each inside node
,

do 1 - sided

search in heap
at that node

by y
-coordinate .

③ Rumg:
OC height +

s )



Chapter 9:
Pattern Matching
"

, idea
:

KARP - RABIN FINGERPRINT ALGORITHM

① Given text TEO . . .
n - I ] of length n &

Idea : Use hashing to eliminate guesses
a pattern PEO . .

.m - I ] of length m

① compute hash function for each guess, compare
② Want to know : is P a substring of

with pattern
hash

T ? ② If values are unequal , guess Eannnmot be an

eg
T : abbaabaab P : ab
-

T\ occurrence

/
eg P = 5 9 2 65 T =3 I 4 1 5 92 6 5 35

sub string substring
substring
suffix use standard hash function : flattening + modular (radix 12=10) :

prefix

In this course : report one occurrence hcxo . . - Xy ) = ( Xo -- - Xy )
,o

mod 97

(usually the leftmost ) . ⇒ hcp ) = 59265 mod 97=95 .

( IRL : report all of
them )

T :

BRUTE-FORCE
-

idea : check every possible guess .

If P occurs at guess i ⇒ hCT[ i - . . i -1m - I] ) = HCP ) .
'

zti-tat-en.pt:

- never misses a

Run - time :
match

① strcmp takes 0cm) time .

M"b
,

T=a^

I.
- h(TEI - . - i -1m -1] ) depends

② worst possible input : P=a
on m characters

,
so

③ so worst case runtime = Olcn -m -11 )m) naive computation takes

0cm) time per guess
④ This is 01mn) if m=% . -

running time = 01mn) if

PRE- PROCESSING IDEA P not in T.
"

Idea to be faster : our hash function
"
Idea :

, -
break a problem into 2 parts :

is a
"

rolling
"

hash function .

① Build a data structure / info that } preprocessing - ie given hCT[ i - . . i -1m -1 ] )
, compute h( TEI -11 . . . i -1m] )

will make later queries easy .

quickly .( this part can be slow )

eg Know h(415921=76
,

what is hC15926) ?
② Do the actual query .

( this part can be fast) 15926 mod 97 = ¢41592 mod 97 - 4110000 ) mod 971*10+6] mod 97

-

2
How to improve

?
- in general ,

① Do extra-Inning on the patterns
- eliminate guesses

based on completed Ti-1.._i-m]m0dm=[T*ygiIi?m°dymm;,_mi?m°dMa"';,''°matches & mismatches
( length m) )

Karp - Rabin , Boyer- Moore ,
DFA

.
KMP

→ used for web searches ,

next hash value
h( previous guess) pnecompute

② Do ext-raprepw-ess.mg on
the text 4 SeEenp±

- we create a data structure to find

matches easily
( length n )

suffix tree
,
Suffix array

→ bioinformatics

- choose
"

table site
" M to be a random prime in 42 , . . . ,mnZ}

- 1- exp = Ocmtn)

- improvement : reset M if no match at hT=hp .



KARP- RABIN ANALYSIS / KMPKNUTH -MORNS - PRATT
If we Lever

match hash - value :

① 0cm) preprocessing DFA : would work
,
but complicated .

② 011) per guess

idea: use a new kind of finite automata .

.

..to#runme--m+) -

g
#

"

failure
"

:

- use this

If hp=h, and there was a match :

transition if no

① 0cm) preprocessing other fits

- does not consume

② Oct) per guess

?⃝
a character

③ 0cm) strcmp & break
-

every state has

; . total run - time = Olmtn) £1 failure are

"

have seen PEO . . -3]
"

wor-st-ase.IS#p--h-but no match

:} with these rules
, computations of the automaton are

( false positive )
deterministic .

- if this happens on)
times, then run-time

"

y
we want to set up

the failure arcs so that

is Ocmcn- m)) .

P is in T <⇒ we are at ④ at some point .
We can show

pczlfalsepositivelc-2.ch# KMP ALGORITHM
'

Pseudocode : preprocessingfor a constant c.

Thus ✓

THE.tn?-am1se+P;sYmY).cn+m1+PCfa1sepositive1.n.m →
"

can I use the forward arc
"

① [
C- Olntm) .

-

② ( ] use forward arc

"

Auxiliary space
: Oct ) .

③ [
DFA / NFA

idea :
Use a

DFA to pattern
match . ④ , F.- we parse

T
,

and reach state ② c⇒

P occurs in T. follow
failure.ci#

we are at state 0
,

- Fcj - i ] : stores where the failure are the initial state

z
We set our DFA up so state j means

from state j goes - just consume

we have just now seen PEO . . .j -17 in

*
note the j -1 ! !

(character is

what was parsed . .

"

useless
"

)

z-2=4a. b. c }

# of executions of white loop E Zi - j + ✗ ( found match)

" where ✗ (found match ) is 1 if we found a match
,

& 0

each
"

forward arc
"

is labelled

otherwise .

with PEJ]

Pref. Initially , i=j=0 & no executions of white-loop .

"

We can show there is an equivalent small

Assume we had E 2i-j executions at some later time

DFA.

( the
"

inductive hypothesis
"

) .
(see above )

In the next execution
,

we had 4 cases :

① we found pattern P .

Then

# of executions £ Zi - j -11 = Zi - j -17Cfound
match ) .

② We use the forward arc .

⇒ i' = i -11 , j
'

-j+i ⇒
Zi
'

-j
'
= Zi -j -11

3 # of executions .

- then ,
it is easy

to test whether P is in T.

③ we use the failure arc .

⇒ j decreases , i is the same

so Zi
'
- j
'

z Zi -j -11

④ we consume TEI ] .

⇒ i increases , j stays
the same

so zi
'

- j
'

3 Zi -j -11 .

j Thus ,
run -time without computation of failure ArrayisOCma×i)-OCnÉ



KMP FAILURE ARRAY IMPROVING THE FAILURE FUNCTION

,
Assume we reach state j -11 and now have a

'

We can also imÉrr .

mismatch .

'
'

z
consider the

"

bad case
"

:

- we can eliminate
"

shift by 1
"

if P[ 1. j]= PEO . . .j -1 ] .

- in general , we can eliminate
"

shift by K
"

if

suppose we reach state 4
,

and the next char is not a.

PEI . . -j] den PCO . -j - K ]
→ failure arc goes to state 2

-

; so
,

we want the tp× PEO - " l" ] that is a

→ forward arc at state 2 also has
' a'
.

suffix of P[ 1- - j ] ; we will fail again
! ⇒ go to FEI] right away .

j Thus our failure - function is defined by Improved failure - function :

F[j] = head of failure are from state j -11 length e of the longest prefix of P that

= length of longest prefix of P That is a
/ is a suffix of PEI . . .j ] and PEE ] # PEJ -11 ] .gugy.x.gpy.y.y.de F-t-p-qo.oign.gu.ne.mg#-

COMPUTING THE FAILURE- ARRAY QUICKLY
"

f-
+
takes into account whether forward arcs

Recall : we reach state l
mm

<⇒ we have seen PEO . . . l - l ] mismatch .

c⇒ PEO . . . e- I ] is a suffix of what was parsed y To compute
F+ :

Let's instead consider parsing PII . . . ] .

1=1--4. ] =/
FEI ] , PCJ-11 ] -1-171=-4-7 ] or 1=-4-1--0

So (F-_FEj]-l],otherwf- Ej] = state reached when parsing PEI . . -j] ontheKmp-automatonfor-
Pseudocode:

-

→ start at index

I

-

→ does the next character

match?

-7 we have already
computed Ftl-1 ]
→ if we get

here

set failure function
- in particular, we can use the KMP- automaton to build

itself .

Run -time = time to parse
PEI . - - m - 1) = 0cm) time .

Therefore ,

total worst- case time for KMP = 01min )aux.space=OCm)Cfailurearray
USING KMP- AUTOMATON TO COMPUTE THE
DFA IN O(n) TIME

Note : from the KMP- automaton, we could

tÉFt in 011-21 - m ) time .



BOYER-MOORE
GOOD SUFFIX ARRAY

REVERSE SEARCHING
'

idea : the matched suffix
Idea of reverse searching :

① compare from right to left P= onobobo

② if we have a mismatch
,
shift so the

new guess fits the character of T. #
[b)

1
BAD CHARACTER HEURISTIC we shift here to get the

"

last
"

occurrence

of the suffix
-

we use the
"

bad character heuristic
"

: ① we use the same strategy as KMP :

use what we matched to eliminate some guesses .

=

② if there is no matched string , move forward by 1

T
-

(the last - occurrence array might help ) ./
shift as little aspossibÉshift "

past
"

the character ③ if the matched string is not again in the pattern,shift so [a]
in
paper is

(so we shift to the
"

rightmost
"

P) if char not in P- try matching a suffix of the matched string to a

prefix of P .here -

- we shift the guess so that Tti ] matches ④ If only the empty suffix fits, shift past
the

word .

the last occurrence in P lie

PELf
]
. )

⑤ if I =
" "

,
use the last occurrence .

L = last occurrence array . "

Pseudocode :
LAST OCCURRENCE ARRAY
"

we need to pnecompute the
"

last occurrence

"

array
"

:

→
character

→ how much to
shift

f- by ?

if no match :
" shift according to L & S

- shift
"

past
"

the character.

If we were comparing
TEI ] with PEJ ] , and

l= LETI ,]]
,

then we want to shift j -e

WILDCARDS : P*
units .

"

We have 3 main cases
, depending on how much of Q

SIMPLIFIED BAYER-MOORE
exists again in P .

-

'

Pseudocode :

z
To unify them ,

we add
"

wildcards
"

to P -

- preprocessingmomma

P*=*÷IPE0-r-m
% " shifting forward based on L

-

Where a wildcard matches ayy character .

3
Then

,
the 3 cases become

① Q is a substring of P .

② A suffix of P is a prefix of Q
.

③ No character of Q is matched .
If we only do

① reverse - order searching : &

② bad - character jumps .

this is called the
"

simplified Bayer - Moone
"

Then
, I is a subbing of P*

algorithm .

"

and take the rightmost occurrence except not at the very

j This works well in practice end .

( ships v25.1. of T in experiments ) p* ,

y worstcaser-un-t.me
= 01mn ) .

index y.IE?ip-#o-*jp....-
9

let the "

beginning
"

position to match be l -11 .

Then Q is a prefix of P*El-11
. . .
m - l ] ;

ie P[jtl . . . m -1 ] is a prefix of P*El -11 . . . m -1 ]
.



COMPUTING THE GOOD SUFFIX ARRAY AS A

HUMAN

a

- we use

stj7-maxp-j-1.im-13isapre.fm/ofP*-l-1...m-2J.fe
FINDING SEJ] IN LINEAR TIME

we note

SEJ ]
= MY PEJ -11 . . . m

- I ] is a prefix of P*El -11 . . . m -2 ]

=

MY PEM-1 .. .j-11 ] is a suffix of P* Em -2 . . . I -11 ]

÷
-

P-4-+1 . . - my ]r
"
:

" "

P + , . . . m - z]
" "

the "

reverse
"

string

= may f
when parsing

P'
✗

Em -2 - . - l -117 at the KMP - automaton

}1 for Pfm -1 . . . jti] , then we reach state j -11 .

This evaluates to

sem-q-i-m-z-muin.LY?infrer??!-:!?0nthekmP-automabnf, brings us to state q

'

,
we can do this by parsing in OCm)tim to compute 5-

SUMMARY
'

With the good suffix - heuristic . we can ship even

more .

But, we can ship even more using
S+[ ] us . SE ]

.

This algorithm can be made to run in Ocmtn) time .



SUFFIX TREE

,

'

idea: Is P a substring of text T

SUFFIX ARRAY

<⇒ is P a prefix of a suffix of T ?
'

We can also stone the suffixes in a

"

z
So
,

we can store all suffixes of T, and then
"

suffix array
" : the sortingpermutations of

start indexdo a prefix - search for P .

the suffixes .
f
of suffix

SUFFIXES IN A TRIE

We can store the suffixes in a trie :
-

1-→

Sort

lexi-gqhi.my t
the sorting permutation
lie the

"

suffix array
"

) .

'

z ¥ : Ocn) (and a very
small constant) .

1- = bananaban

To see if P is in T :

Building :

① Traverse the trie using P '
① sort ( using MSD - radix - sort )

② If we are still
"

in
"

the the after ① ,
then P is

- run - time = ocnz) worst case
,

but usually faster.

a substring of T. ② A special algorithm
"

Rune: OCIPI ) = 0cm) . - run - time = Ocnlogn)

- covered in CS 482
'

y But the price to pay : ; Pating :

- T has length n

- use binary search .

- So we have n -11 suffixes of length 0,1 , . . . ,n

- thus
,
the trie can have rCn2) nodes .

SUFFIX TREE
'

We can instead store the suffixes in a

compressedtrie :

Run - time :

Oclogn) comparisons '
-

comparisons =

compare P to a suffix : 0cm)

so run-time=OCmlog-
( slightly slower than suffix -trees . )

51
begin end

index
index

(of where
the

suffix is )

'

z Prefix - search for P takes OCIPI )= 0cm) time

[details omitted)

3
We can build the trie in Ocn) time .

( n0dek - too complex ! )

y Spade : Ocn ) .



Chapter 10:
Text Compression
Idea : MORSE CODE

I
-

① Input: source texts S (huge ! ) .

using
the encoding

trie in the previous section
,

we can
convert the alphabet into Morse code

② Output: map
text s into a new

text C ( smaller) . ( eg if
"

left
"

= • &
"

right
"= - )

'

Note S lives on alphabet Is ,
and C lives

Pw_blem : Morse code is riot lossless !

on alphabet Ec .

eg
WATT

-

objectives: •÷=÷÷÷
① minimize the

"

compassionate
"
: where

( unless we use an

"

end of char
"

pause )

comp.ratio=¥f%gf¥ PREFIX - FREE ENCODING/ DECODING
'

To achieve lossless encoding . we use an encoding

② Fast encoding & decoding .

+me where the codewords are PreFe .

-

All compressions we look at are hÉ_ "

( ie no codeword is a prefix of another codeword)

"

we can get
S back from C uniquely -

z
In particular, we make it so the encoded the has

STREAMS codewords only at the leaves '

-

-

we usually store
S and C as

"
"

streams "

z Run
to decode C : 04cL )

°"tP
Run-time to decode S : OCIIECCH) = let

☐JD Ces

8T¥ tail →

input #
"

Eatman
: Read one char at a

time via

top /pop
-

- also supports
'

is Empty
' and

'

reset
'

.

'

QÉuman: write one character at a time

( via append) ENCODING ALGORITHM

-

,
This is convenient for handling large +"" " we

-

; Imagine we have some character encoding
E : -2s → EE .

start processing
while loading ) -

Note : E is a dictionary with keys in Is -

CHAR - BY- CHAR
ENCODING

I_dea : assign
to each [ c- Is a

codew-ord-t.cc
) .

Char.nl:1?l:l:::.- caesar

shift '
DECODING OF PREFIX - FREE CODES

[(c) / 10000010/10000011 / | - - '

[ AS d '

pseudocode :

'

The above are

"

fi-xed-engthe-wding.si
'

:

2

all codewords have the same length -

'

Better :
' '

v ing
"

-

more frequent characters get
shorter

codewords .

VARIABLE - LENGTH CODES
'

Run-time : OCICI ) .

Ovaf: find a short encoding .

ENCODING FROM THE TRIE

Idea : Some letters in E occur more often

We can also encode directly from
the trie :

than others , so use shorter codes for more

frequent characters .

pk: encoding
the alphabet in Morse code .

We build an

"

egt
"

:
11 setup

] run - time :
oclwl )

Rumg : OCITI + Ict ) .

( This is in Oct -2s / + Ict ) if T has no node with 1

→ more frequent letters leg E & T) go
"

higher
"

on
child . )

the trie than less frequent ones leg F)



HUFFMAN - ENCODING
TH HAS MIN COST AMONG ALL PREFIX - FREE

idea : frequent chars should have short

BINARY ENCODING TRIES
codewords .

z In particular .
-

The Huffman - trie Ty has minimum cost among

Ict = I IECCII all prefix - free binary encoding tries .

CES

Ploof . We will show for any prefix - free binary encoding trie To
,

= [ ( freq of C in 5) • lE(c) I
CE -2s

we have

cost ( TH ) E cost ( To) .

= I f- (c) ° ( depth of c in the T )

we do this by induction on 1 Est .

CE -2s _÷
Ba: I -2,1=2 .

= I f-(c) odycc)
c- Is To can't be better .TH :

We define
Iep :

cost(-)=fcdd# Huffman +ne TH some other

trie To bring up
sub tries

Assumption : list > 2 . fix 2 chars a
,
a
"

f
without increasing ] when node has

g idea :
Ca & a

'

are siblings
in

cost only one child

THI
eg

GREENENERGY ,
Is __ ÉG

,
R.E.MY }

encoding
trie Ti : no

node

*

exchange ac→b
,

char freq : G : 2
,
R :2

,

E :4
,
Ni ? Y :\

has exactly one child

replace
y w/o increasing cost ] a'⇒ b' ' where

b. b
'
are two

19 by
encoding trie Tz : a

,
a
'
are siblings on

the

lowest level

siblings replace TF

f) by

TH
'

: encoding trie for Tz
'

: encoding trie for

Elia, a
'

} UÉE} Esloia,a
'

} vi. q}

By induction,
① set up lots of 1- char tries ;

cost (Tri ) I
cost ( Ti )

② Find the 2 least frequent chars a
,
a
'

and
⇒ cost (TH

'

) + f- (a) + flat) E cost ( Tz) + f- (a) + f- la
'

)

make them siblings in the trie

⇒ cost ( TH ) f
cost ( Tz ) ( E cost CTO ) ) .

094eg
proof follows .

③ Repeat ② .

£ This is not necessarily true for other bases .

PSEUDOCODE
"

3
This also does not always make shorter .

NO LOSSLESS COMPRESSION ALGORITHM HAS

CMP RATIO CI FOR ALL INPUT STRINGS

No lossless compression algorithm can have compression
ratio < 1

for AI input strings -

RUN-TIME OF HUFFMAN - ENCODING

Pioof . Assume Is __Ic= 40,12 . Assume we had such an

i Priority queue
has / Est items initially ;

algo .

'

We do delete in test time .

consider all the bitstrings of length n -
There are

- so
, building T takes time 0115,110g I -2,1 ) .

2
"

such strings .
Rest of the encoding takes time 01151+14 ) .

The algorithm maps
these to the bitstrings of length

"

4
But , En-1

, of which there are

① we need to send the tie along . &

n - '

= 2^-1 < 2
"

.

② we need to go through S twice .

1+2
'
+ . -

.
1- 2

→ but
,

Coste Huffman the) is small . This set is smaller ; so
, by pigeonhole Principle , 1- bits-1^95

✗
i. ✗ z of length n that both gets encoded as bitting w .

But this contradicts the losslessness of the algo !

Proof follows. ☒



MULTI - CHARACTER ENCODING

idea : Encode multiple characters ca substring of 5) DECODING

using one code word .

'

idea:

① Extract the leading
bit :

RUN - LENGTH ENCODING
② Compute

the length of the 0 - run ,
l
,
and

extract 1+1 next bits .

we assume Is _- 40,1 }
③ convert this into a

number , and write this

( the inputs are bitstrings ) .
number of bits .

A
"

run
"

-

is a maximal sub string that uses only ④ Repeat steps ② -③ until the string is empty .

one character .

eg
C = 00001101001001010

g-TTT
2

eg S = 11111
0001111

TTT leading bit
/ 13 27W ' Zeo

idea: =o 3 zeroes
0 Zeroes ( so 1)

① We write down the lengths of the runs in S ;
⇒

S = 00000000000001111011

& then #ITT

② we encode the string by these lengths . Pseudocode :

③ We also need to specify the firstbit we started

with .

eg
5=1 5 3 4

- -

first bit the run - lengths

4 However
,

we want Ec to be finite, and preferably
40,1 }

.

So
,

we need to map integers to biting, so

we do not need separations '

Run-time : 01151 + Ict )
.

ELIAS GAMMA CODING '

; we also note

"

,
idea: to encode K : ① This works well for long runs -

eg On → Llogn ) -11
+ Llogn )

+÷
= Zllogn ) -12 .

① Write Llog KJ copies of 0 ; then

-

② The binary representation of K ( always starts
binary representation
?
the leading 0's)

with 1) . Chas length Voght + 1.) leading bit

② But this works really badly for short runs .

eg A run of length 2 .

. . . ..
I / . . . . → . .

. .
. .
010

. . . . . . .

③ It is useful for transmitting black & white pictures

(especially text ) .

Why ? → long runs of white / black pixels .

Pseudocode :



LEMPEL - ZIV- WELCH ENCODING

'

This is used in compress & GIF
- DECODING

idea : we instead automaticallydetectn longer idea:

① Initialize D with ASCII ;

substrings
that got codewords .

② Read the next code number :
'

z To do this
,

we repeatedly
③ Look up corresponding string in D:

① Find the longest substring , in the part

④ Expand D as the encoder would have

we want to encode
, for which we

done ;
have a codeword .

( but we are one step behind)
② Add this string + next char to our

⑤ Repeat ② -④ .

dictionary of strings
with codewords .

e)
gang na yana

→
markers to keep track of codewords

Cif doing by hand) 65 78 128 65 83 128 129

D= ☐☐☐ ¥?s→N 129

"

next
"

free codewordyyyj.az

"

A
67

- -
'

ya
65=128 - 130

[current,< D: dictionary that maps strings ;

output to codewords

→ ⇒ a- ng s # ⇒ a- ng
( usually a trie)

we keep adding to the trie in this way

until we run out of input . 83

We assume

① the text is in ASCII ; &

② D initially stores ASCII .

-

5
For now

,

the output is a
list of

integers .

We need to convert this into bitstrings .

① We could use
Elias - Gamma

codes

- but this gets
too long .

② Instead
,

we use

' '

ng
"

of the
,

z
Note that at the end

,
we could get a

numbers
.

code number that was about to be added .

- but we stop adding
codewords after

'

3
If we want to use the decoding of the codeword

code 4095 .

we are about to add :

we can show the string is then

f Pseudocode :
the previous string + 1st char of the prev. string .

"

Pseudocode :

previous-
string

-

'

Enwdingime: 0451 ) I concatenation

, D-wdingh.me :

- each round of the white takes time

proportional to the # of chars written to

the output

Thus the run - time is OCISI )
.

; Notes :

① This compresses
well in practice : but

② This is very bad if no repeated substrings .



bzip-2
-

Idea: we transform the text into something that
BURROWS - WHEELER TRANSFORM

is not necessarily shorter, but has other

Idea:

desirable qualities .

eg S = alf_ eats _ alfalfa
$

Cz

=

⇐
-

=
- -

① Write all cyclic shifts ; ie Sti -11 . . - n -ITH STO .. .i] Yi .

② Sort them lexicographically .

MODIFIED RLE ( $< wcacec . . . )

Idea : Encode only runs of 0
, using binary bijection numeration

. ③ c = rightmost column of the result
"

matrix
"

.

( E=&0, .. .
,
127 } )

'

'

observe that if s has repeated sub strings,
then C like'T has

eg g = 110
,
114 , 100, 010,0,

/
' b' 10° ' ? QQ 1°]

long runs of chars -

T T
eg

in our example ,
"

alf
"

shows up
3 times .

⇒ C = 110 , 114 , 100 ,
A

"

.
B
'

,
1. 6,100,2, B

"

,
103

⇒ there exists 3 cyclic shifts that start

with
"

alf
"

.

K O l 2 3 4 c- maps
runs of °'s °f

⇒ there exist 3 cyclic shifts that start
this length

A
'

,
A
' A'

,
B
'

" ' "

ECU) ^ A
'

B
'

• -
-

c- to this substring . With
"

If
"

and end at
"

a
"

.

Output alphabet : -2=41 , . . . . 127 } vi. A:B
'}
.

Likely , these shifts will end up
consecutive .

If they are consecutive ,
this implies

the 3
'a' s are

MOVE- TO - FRONT TRANSFORM
consecutive in C.

Idea : for the same reasoning . we also get 3
'

l's that are

① Initialize D: array of site test that stores %
likely to be consecutive in C .

C typically ASCII )

FAST BURROW - WHEELER TRANSFORM
② Get char c from the input .

i Idea :
③ Write D-

'
(c) to the output . As the corresponding

" suffixes in the

( using brute force ) . T suffix array .

④ Update D by bringing c to the
"

front
"

of D

( the MTF - heuristic ) .

'

'

If we have K - consecutive same characters
,

we get a run

of K - I 0's in the output. ① we need the sorting permutation of the cyhs.

-

j We should have lots of 0.1.2 . . - i
& Very few of

② This is the same as the sorting permutation
125 , 126

, . . .
.

of the suffixes .

De-wd.mg : same except D
"

becomes D. ③ so
,
to compute the encoding, we

- compute the suffix array
( Olnlogn ))

- output C[ i ] = s[ ( Asti] - 1) mod n] .

DRAWBACKS OF BWT

Run-time : Ocnlogn)
(maybe 0in) )

j Stace : Ocn) (with suffix array
5)

.

'

Here
,

we need the entire text at once .



DECODING IN BWT
'

Example 1 :

eg c= annbslaa

Reconstruct the matrix of cyclic shifts :

- rightmost column is just
C.

¥ - """°" ""^^ is +" ""

as C
,
but sorted .⇒µ µ, , anway, o, g , b .

> Second character of S is a.

indexes by
now #

after b is
the a in

÷i
PIOF. Define Wi = the word in front of char ✗

in now i.

we note Wo §, Ws £,
wt

Wo
Cno equality ; end of char symbol

n
z

is in different positions ) ., ? we have 3 go.ie
shifts

:

Ws 5 aow@
Wo a

asWI
abWI

The
a's do not change the lexicographic order

,

so

Restating :
%W° Tex %w5 ¥ aowb .

Thecharac-ersinthef.rs/-columnareinthesamf-relative order as they were in the last column -

S : bagnzagniao $
as a

2÷÷F:=→÷
,

a

÷
indexes by
now #

z Example 2 :

eg c= ardslrcaaaabb

$3 - -
- - - ao Final string :

ao - -
-
- . r

,

ao - -
- - dz

az - -
- - -

$3 ( see course notes forAg - -
- - -

re,

aq - - - - .

c ,
more details . )

bio - - - - -

ao
b
, ,
- - - - - a

>

Cs
-

-
- -

- - as $z→ao→r,
→ bio → ao → - . .

dz - - - - - - - a g

ri -
-
- - - bio ( append backwards .

)

ry . -
- - - -

b
, ,

j Pseudocode :

Neg radix sort , merge sort

"

4
This is simple , & runs in Ocn ) time .



Chapter 11:
External Memory
"

,
so far , our computer model assumed

"

a" MERGE

memory cells are equal
"

and
"

we have

Merge takes 0C;-) block transfers .

infinitely many of them
"

.

MERGESORTz Now
,

we still assume we have infinite memory, -

mergesort uses Tlogzcnil rounds of
"

splitting
"

&

but distinguish how easy
it is access .

"

merging
"

.

THE c-x-iii-nimimoiTTJ.ci/=mm
É So

, we need O(÷. logn) block transfers .

idea:
d-WAY MERGE

*
we only model

'

idea :

one gap .

^
"

block

=transfer
" |

( orders of magnitude
slower )

- Choose sit . the blocks fit into internal memory
-

In particular , Cd=Y
① B is the

' '

block size
"

; the amount transferred at -

'

pseudocode :

once ( ~ few MB )

② M is the size of the internal memory .

( can load f ¥ blocks at once)

( ~ few GB )

③ n is the size of the input . ( ~ few TB / PB )
=

STREAMS

, idea :
'

If we split & merge d
ways . we only need Mogdn]

rounds .
'

So
,

# of block transfers = Oclogdn - ÷ ) .
'

g
But we can improve further ( details omitted )

( OClogn_ (F) . ÷) →
"

optimal
"

bound for Emm .

B

Total # of block transfers : 01¥)

( this is optimal ) .

GOOD/BAD ALGOS FOR EM
"

,
Good algorithms :

① Huffman

② LZW } use streams

③ KMP

④ Boyer - Moore
"

z
Bad algorithms :

① BWT

② suffix array
& tree

} require while input



COMPARISON - BASED DICTIONARIES
BSTS INSERT IN a-b- TREES
-

we know search /insert/ delete can be done with

Idea :
0110g n ) block transfers (naively ) .

- Call search , and add key and an empty subtree

We can show we need at least Alloy,
n )

at the leaf .
block transfers for search .

However
, if we do this

, we might get that a

Can we achieve O( log ,n
) block transfers?

node is too big.

IDEAL STRUCTURE FOR SEARCH eg
insert 117)
→

'

idea :

"

To solve this
, we use

' '

niHIg
"

:

split into
one

✗ block → holds subtree

y
☐☐☐

→ another

subtree
.

↳ ?⃝ "
" "" "

split I
into 1

. .

/ 109 ☐

subtree
"

kick
"

this up
to the

parent .

We have to repeat node - splitting until all

nodes are
"

happy
"

.

'

Search path hits Oclogn )

⇒
⇒ Oclogbn) block transfers . q

where be OCB) .
☐

"

z
We can also view each block as one node in a

multi way tree Pseudocode :

( b -1 KuPs
,

b subtrees ) )
a-b- TREE

, idea
:

"

Note :

- overflow means b keys & btl subtrees

eg 2-4 tree - after the node split, new nodes have 3 Lb J keys

- since we required as 1b¥ )
,

this is 3 a -1 keys① a. be It
.

2. Eat 1b¥ )
.

( usually we set a= (¥1 .
) as required .

② Every node has at # subtrees c- b. except Re: search cocheight.bg b) )

at the root
,

which has 2£ # subtrees f b ' + update ( ocheight . 10g b))

③ AI empty subtrees are on the same layer. :
. run - time = ocheight

. 10g b) .

④ A node with d KuPs has exactly d -11 subtrees . IMMEDIATE SIBLING

z0rdperty: 5

""
close up on a node .

☒ ☒

_¥Éµ
immediate sibling

✗ < K
, K ,< xckz kz<✗ ch }

✗ Vx v.✗
× > hd
Tx

SEARCH IN a- b- TREES
'

Similar to BSTS ;

① We load the root :

② Find the best place for the search key in the

node ;

③ If K is not in the node
, repeat in

the appropriate subtree .

④ Otherwise
,
return K & the corresponding

value .

-

Rune ( in RAM model ) : OC height . log b) .



DELETE IN a-b- TREES HEIGHT OF AN a-b-TREE

idea:
'

claim :

① search for k
,

then trade with successor if KVP

heightc-OCloganlf.is
not at a leaf .

where n=#Ps.

② Remove the key & one empty subtree from leaf.
*

note : # of KuPs >> # of nodes .

③ But this could lead to undefl-owi.ie < a subtrees .

Roff- Consider # of nodes on level i > 1
.

level 0 II 31 node This is at least

zai -1
.level I

> 2 nodes

1111141"level 2
☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ 32A nodes

✗ 111111h 1411.11111114
3292 nodes

Thus
:

h
# of nodes 3 I + I zai" Cif h -- height )i= ,

"

To resolve underflow , we can use
"

rotations
"

,
and

Then

=/ + 2aa .

"

steai-mm-heimme-dia-esibh.mg if it has
"

extras
"

.

n= # of KVPS 31m + ( a- 1) 2 aa
root

else

a
= I + 2 ( ah - 1)

= 2am -1 .

⇒ he logo.cn#)c-OCl0gan)
as needed . ☒

Otherwise
,

we can perform a

"

node merge
"

, by stealingfwm
With a similar proof , we can show

heenI.

heighterC1ogg-
We also choose ae -0lb)

,
so the a-b- tree

has height
- we repeat this until all nodes are

"

happy
"

. heightEO(10gb"

4 If this process continues until the root has only one

subtree
,
it self-destructs . RUN-TIMES OF a- b- TREE OPERATIONS

Pseudocode :
-

All the run - times ( in the RAM model ) were

asymptotically height . log b.

Then

heightelogo.CI/c-OClogbn)=OlYgn-).&
z Thus

run-timec-oclognl.fi
This is no faster than AVL trees .

'

'

Run: Ocheight . log b) .



CONVERT 2-4- TREES TO BSTS ; RED - BLACK B-TREE IMPROVEMENT I -

TREES PRE- EMPTIVE SPLITTING / MERGING
'

This has Ollogn) run -time
,

but faster than AVL - trees
-

Motivation :
in practice .

eg
insert ( 49 )z A d- node becomes a black node with d- 1 red

children .

① standard insert does the following :

- load the blocks
"

on the way
down

"

( not quite unique ) - load them again
"

on the way up
"

.

"

The resultant trees have height Oclogn) . ② we want to avoid this .

idea:A
"

red - black tree
"

has the following properties :

① If node is not full
, keep searching

① It is a BST ;

② If node is full , immediately split .
② Every node is either red or black :

③ Then keep searching in appropriate new node .

③ Every red node has a black parent :
3 ie we split

"

just in case
"

.

④ Every empty subtree T has the same

"

4
This can save half of the block transfers .

"

blyth
"

;

ie the # of black nodes from the B-TREE IMPROVEMENT 2 -

root to T. B+ TREES

, tnsertdeete: i idea:

① convert the red - black tree into a 2-4 tree ; ① Each node is one block of memory .

each of
② Perform the operation on the 2-4 - tree ; * ② All KuPs are stored at tears ,

then which are at least half full .

③ convert the 2-4 - tree back into a red -
③ Interior nodes store only keys for comparison

black tree . during search .

B-TREES ④ Interior non - root nodes have at least half

-

A
"

B - tree
"

is an a-b- tree tailored to

of the possible subtrees .

Emm .

⑤ Insert / delete use pre-emptive merging / splitting .

'

'

Ideai

① Every node is one
block of memory

( of size B)

② b is chosen maximally s - t a node with

b- 1 KuPs fit into a block : &

( b is called the
"

order
"

of the tree . )

*
be OCB ) typically -

③ a= [¥7 .

→ This can store 53--125 KVPS .

z Advantages :
① Bigger

order :

☐→
"

v

"

: values ② can store more KVPS for the same height
-

( or references
to them) B- TREE IMPROVEMENT 3 -

LSM- TREES
-

idea:

① store dictionary in internal memory
that logsj Note that

all changes :# block transfers in B -tree = Ocheigntl
= Oclogbn)

② To se: first search in co , then Cif needed)=gy,gp in ,
,

③ If internal memory full : do lots of updates in C
,

"

y
This is asymptotically optimal . at once .

/C32,v)o(58,v1o(_
Co clog of changes )

C
,
( B - tree )

y
32
/ Vg

58
. V1 - ,-

•

30

inserted 14N 38,v 64
,
✓

/ 0
•

•

20

\

47 20, u 44 ' ~ zo,✓

deleted inserted zj.ro?v

z
Note :

many further improvements .



HASHING IN EMM
"

,
Each operation takes expected amortized ② (1)

runtime .

"

This means each operation also takes Oct ) block -

transfers .

z However, amortized bounds are a problem !

→ rehashing is the issue .

So
,

how do we do hashing without re -hashing ?

TRIE OF BLOCKS

Assumption : we store non- negative integers
-

If no split works ( ie duplicate bitstrings) , we Extend the

Cbitstringsl hash function .

z idea: ① suppose hcu) yields the bitstring

① Build pruned the D Cthe
"

directory
"

) of integers corresponding
to K .

in internal memory -

be another hash- function .② Let h
,
: K → bitstring

② stop splitting in the when remaining items fit in

③ Then
,

use

one block .

hth.ik-bi-string-hckl-h.CI#③ Each leaf of D refers to block of external memory y
concatenation

that stores the items .

EXTENDIBLE HASHING IN TRIE OF BLOCKS
'

We can also save links by
"

expanding
"

the trie

and only storing the leaves .

We store the D as an aIay , rather than a the :

j we need to store'

Ézear :
① the global depth dp ; &

① get bitstring for K
, say

00101

② the local depth .

② search in the tie

inset :
"

convert
"

trie into table & v.v .

③ load block at leaf y

④ search in it -

If the trie's height increases
,

we need to update the array .

→ This is 1 block transfer

(assuming trie fits into internal
memory )

y Insert

① Find the block that needs it
,

& insert .

② If the block is full , split the block by

the next bit .

③ Repeat ② until the blocks have space .

- but we don't need to load blocks to update the

array .
"

This uses no more block transfers than with tries .

→ It is very likely we are done after 2-3

block transfers .
'

-

g Delete : similar .


