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Chapter 1:
Perceptrons

INNER PRODUCT: CX,w>ML

."Machine learning"is a branch ofAIthatfocuses "Define the "inner productofa
d b tobe

on methods thatlearn from data & make

↳ab;,
predictions on unseen data.

g.3 phases:
where aj, bj

are the ith entries ofa d b.

LINEAR FUNCTION

d.e ,

afunction,"ink,",ze
.Equivalently, f is linear if there exists weld

such that

-few=x,wj-

proof. (E) letw=Ifle,..... fleal], where ei is the

PARADIGMS OFML ALGOS (TRAINING) itcoordinate vector. Then

"Supervised model":learning with labelled data excy)
f(x) =f(x,e,+... +Xded

-

eg
email classification, image classification

=x, fle,) +... +Xdfled

" "eisedmodel":discover patterns
in unlabeled data x

=(X,w).

eg
cluster similar datapoints, reduce data dimension

(<=) Note

et2 f(0x+Bz)
=(0x+Bz,w>

:-risedmodel":using
both labelled & unlabelled

3 Semi-sul =0xX,w) +B(z,w>

data. -ff(x) +Bf(z). 5)

WHAT A DATASET LOOKS LIKE AFFINE FUNCTION
"we say f is an "affine function"if there exists

a wEIRd, bER such that

Aw+ b XXERY

SCORE:I
Given weld be, define

the "score"at

some XEIRd tobe
-each column is a datapoint in in total d each with d

features
- y is the "label vector" ⑱(x,w +b.

.....

- x,& xsare the testsamples whose labels need to

&Our "prediction"for y
is then

be predicted.
2berex): sestizo

(we use "x"to denote testsamples)
we wanttotune wib so that "=y"for

each X-

-xis free, web

linear fixed
separator

- wd b uniquely
determine the

linear separator.



PERCEPTRONS

.Algorithm for training:

note:we can just
x SetIt =t

17
-

-we typically setw=0 & b=0

-

- we only update after a mistake

Caha "lazy update" (
-note we are going through the data one by

one.

.....

⑦ In particular, we wanttofind weRd, bER such that

2

for all i=1...., n,

....
i+b) 0.

Eb Note thatifa mistake happens on (x,y):

y(cx, Wn+,
+bx+3 =y[2x,wx

+yx
+bx+y)

=y[(x,wn) +yxx,x)
+bu +y)

=y[xx,wn)
+y(1x112 +bu +y)

=y[2x,wn)
+by) +y21x11,2 +y2

=y[x,wx
+bn) +11x12 +1 :.y =I1

-

...Example:spam filtering. always positive & I

ATRICK TO HIDETHEBIAS TERM

ithatsare a intere

calculations.
.....

⑦2 Thus, our new update rule is

-pad+YXpad



CONVERGENCETHEOREM (LINEARLY
SEPARABLECASES

Suppose there exists a we such that

y,cxi, w*<0
Xi-...., n.

Assume Ixillz Xi and thatweis

normalized so thatIlw*l2= 1.

Define the margin 5:=min/xi,w* 1.
Then the Perception algorithm converges
after 1422 mistakes.

~
This has length (w*, x,1. Now, letwo=0. We now know after M updates:

...... w*:11w*ll2 =1 >Wm, w> > wm-1,w*s +2W↑- <Wm-2,w4 +25
*-

=
MW.

=

- 0

⑳
, . . . , Wo, w*> +m70* -

H:ix=(wY,x) =0} Similarly, note

- w is our "perfect"solution for a lie the goal sum,Wmwmwrtemcriteria is satisfied).
e

- thus, we wanttoshow w "converges"to =Mc =O

w*. Since

Proof. Recall the update is we w+yx. cos(w,w4) = =1 =(w,w* =11wil

Define Therefore
coscu, wt) ==w*

my -zw, wY
= lwll =
m =vmc

11wil

(since we defined (1w"ll=1).

Rearranging, this tells us thatman,which
consideran update and its effecton

finishes the proof. I

(w,w4> -(w+yx,wY> In particular, the larger
I is, the more separable

=(w,wX) +* *is
the data is, and hence the faster the

perfect algorithm converges!
=(w,wY

+(x,w)/

> (w,w +W.

This means for each update, (w,wis grows

by atleast530.

Similarly, consider an update's effecton IIWIR:

Ilwll =<w,w> -> <w+yx, wyxL

=(w,w) +xxx) +
-O

y2x,x>
=2w,w) +2y(w,x)

+11x,z
u

=2
=(w,w) +c

This means for each update, (w,we grows
by atmostC2.



ANOTHER PERSPECTIVEON PERCEPTRONS XOR DATASET

,our hypothesis is I =signicw,xx. "There is no line thatcan separate t

..... from --

⑦ We can define our "loss function"as
t
⑧ &

-

e(w;x+ iy+) =
- y+(w,x)I(mistake on (x+,4+))

=4 - y=w,xz),
ifmistake happens

0

·t
-

(=) y+w,x+ < 0!
Then:

1.
10

/
otherwise Whatifwe run Perception?

=- min; 0, y,W, xt 3. Suppose Ew, b s.t.y(x,w>
+b (0.

⑦ The average ofall the loss functions ofthe data x,
=(0,0),y, ==

=bc0

3
xz

=(1,0),yz =
+=w,+b>0 3 w, +w2+2b

points is then
xz

=(0,1).yz =+=) W2+bc
c0

xy =(1,1),yy =- =)w,+wz+2b<0.3-W, XIImistake on x13.
Hence

(W,+wz +2b) - (w, +wz
+b) =b >0,

....
-By Our gradientdescentupdate: 7 0 -O

⑰((w1,X+,31)=wf +4+4+x+#Imistake on X13.
which contradicts our earlier statement

Ifwe setthe step size y=1, then thatbc0.

HARDNESS RESULT (NON-

We+y++ LINEARLY SEPARABLECASE)

...Ifthere is no perfectseparating
which is our update rule.

hyperplane for our data, then the

PERCEPTIONS ARENOTUNIQUE

..Note perceptions are notunique as the algorithm Perception algorithm cycles.

terminates as long as there is no mistake.

-itdepends on initialization & our sampling rule

ofIt

MAXIMIZEMARGIN

" We wanttochoose w such that

1
max

W =↳. := xiw+b.



Chapter 2:
Linear Regression
,Idea:Given training data(Xi, yi), find

STATISTICAL LEARNING

a fix-Y such thatf(xi) =Yi,where
,we assume the training & testdata

are both id samples from
① XieXaRd:the feature vector for the ith

the same unknown distribution

training example P:ie

② y, c Y = 1Rt:
tresponses

-note we could have t=1 or even t =8

Note for any finite training data (Xi, yi), i=l....... there S
existinfinitely many functions of such thatfor LEAST SQUARES REGRESSION

all i, f(xi) =yi. 'we wanttochoose of so that

eg
X I -

I
itx**astsquee

error.
X

8.Moreover, our prediction by fex) can vary

significantly on new data x!

,to choose f, we can

A leverage prior knowledge offix

eq if x& y come from a population which

follows "rules"

② choose the "simplest"function.

UNDERFITTING, GOOD FITTING,

OVERFITTING



REGRESSION FUNCTION:M(x) BIAS-VARIANCE TRADEOFE

ogression.*"x ,letto be the regressor
learned on the

training datasetD. Then

⑦ However, calculating on requires us to Ep,x,y"fp(X) - y 112 =ExllEp[fp(X)] - mix) 12...,

-

I
-
-

⑦

-

itEyexpressiknow the distribution ofP, it all
terror

bias

pairs (X,Y).
-

...

we show thatm is optimal,ie variance

+ Aitmx)
- x 12

W.ElIX-XR. -noise (variancel
proof. We have shown

Proof. First, see that
-

El1f(x)-Y1 =E11f(X) - m(X) +m(X)
- x11

Ex,yl1f(X) -x11:Exyn
= El1f(x) - mix)1 +Ellmix)-Yi -

noise - independent
+ 2E<f(X) - m(X), m(X) - y >. Taking Ep ofboth sides:

wrt fy.

Then
cusing latbl?=Ial1, +11b12

+2<a,b>)
EpEx,y l1f(x) - x11 =EpEx11fp(X) -mIX)l

E [ <f(X) - m(X), m(x) - y]
+ Ex,y(1m(x) -Y1.-0

x,f

=Ex [Ex,x[<f(x) -mix),m(X) -y >]] Define f(x) =Ep[fp(X)].

(by double expectation theorem, see STAT330) Idea:We can sample multiple is from
-

=Ex[<f(x) - mix), mix) -Ex various samples D:

=E[<f(X) - m(X),0 >3 D, -p fx,

3 ThenwedetereX

=0.

Hence DurP + fDn
Then

E11f(x) - Y1 =E11 f(x) - mix) 11 +Ellm(X)-y11?.
Ep Ex "f(X) -mix)I-

noise (variancel term

- independentwrtf. -Ep,xl1fp(X) -f(x) +f(x)-m(x)l

Therefore, toreduce EIlfIX)-XII, we need toonly = Ep,x1f(X) - f(x)112 +Ep,x))f(x) - mix) (z
minimize El1f(X)-m(X)Il?, which is minimal cie =0)

when f=m!
+ 2Ep,x < fp(X) - f(x), f(x)

- m(x)>.

However, m is unaccessible since the conditional Similarly, see
that

distribution is unknown, so we need totry
Ex, x< f(X) - fp(X), m(X)

- f(x)>

togetclose tom using the training data.
=

ExEs < mix)
- f(x), f(x) - fx(X)>
-

constantwrt D

= Ex < mix) - f(x),
f(x) - Ex)3>

F(X)
=0 S

Expanding 0 yields the resultdesired. B

.....

⑦2 In particular, as the model capacityincreases.

① the bias term decreases (ie model is more

expressively powerfull;but
② the variance increases (ie model is less

Stable).



SAMPLING -TRAINING SOLVING LINEAR REGRESSION

In practice, we can only calculate the i
wonloss for

toas

sample average, ie we find ofso that I-
↑Ellf(x) - x:=E,lfxi)-yil. 2Taking the derivative wrtW &

setting
to zero:

Emerasour training datasize ntw, EtE & -
- I FwLoss(w) =F(wx-y) X ( =0)

hopefully argminE -> argmin E.
=>wxxT =

yxT

LINEAR REGRESSION
=>w =
xxTcxxT)

- l

T

7
8.In linear regression, our regression functions are L

-

"affine";it in the form
PREDICTION

A+,WERI exd, belt. E.Once we have solved W on the

- training set (X,Y), we can predict
- 1 =# ofresponse, parametes

we wantto

on unseen data Xtest:

- d =
Predictinputparameters

....Again, we can use padding: *WXtest⑦
- I
-

(x=(Y), w =[w,b] =f(x) =wx 8.The "testerror"(iftrue labels were

-
available) is

In matrixforms

Iamest" test-Yfestl
-"*eems,e I

F

X= [X,, . . ., Yn] E IR .The "training error" iSI iterror:llY-wXIII.
-

iwe wanttofind
w such that

,we can minimize the training enor

11WX-XIPE to reduce the testerror.
min

I WE IR
-

ILL-CONDITIONING
-

,consider X= [P?], y
= x-1). Solving

linear least squares regression:
training

- geometrically, we

T

wantto minimise the v =y/(xxT
+=x -1),i)data I

↑
sum of distances between

=( -Yzi)
data

the inputtraining
...

so slightperturbation leads to&
& the resultant

chaotic behavior!

I hyperplane. "This occurs when X is ill-conditioned:
⑧

is close torank deficient.
wx-Y

ie-two cols in Xare close to

linearly dependent
- butcorresponding is

are

different
- this is a contradiction -> w

becomes unstable.



RIDGE REGRESSION

we,insteadaneI
-

Why is this
better?
-

Consider Loss(w)=n11wx-ylE +XIIWIIE.

=>FyLoss(W) =(wx-y)x
+2xw( =0)

=>wxxT- xx+xnw =0

wxxT - yx+W(XnI) =0

wxxT +w(xnI) =
yxT

..w =
(xxT+xnI)-cxxs

Then xxT+nRI is far from rank-deficientmatrices
for

large 2. (Proof uses SVD-see MATH 235).

...

iscontrols our trade-off:⑤
① R =0 reduces toordinary linear regression:

② R =x reduces to W =0;&

③ intermediate arestricts outputtobe

I proportional toinput.

:Alternatively, note
3

+xWI=1WIX I]-[03IEI-
So we can also

① augment
Xwith xI:ie X =(XWI)

② augment
Y with zeroes,ie Y=CYOL

Cie dataaugmentation) toachieve regularization.



Chapter 3:
Logistic Regression
MOTIVATION

8.This is for meclassification. :Ifwe the log ofodds ratio

⑦2 We can use lx,wil (our margin) as a --
*we can only

measure of our confidence in the
perform logistic

....
.

prediction y

This

in- I regression if we

..... assume this!
& However, as this is un-normalized, itis

then
3

hard tointerpret

MAXIMUM LIKELIHOOD ESTIMATE I
,we wanttodirectly learn our "confidence" -

↳ this is also called the

xiP(Y=11X =x)I "sigmoid transformation"
- 2plugging this into the earlier

.Then, ifI...., Yn,X...., Xn
are independent, then

optimization problem, we wantto

PCY, = y, . . . ., Yn
=yn) X, =x, . . . ., Xn

=xn) find

I
.....

-ig[1 +exp)- cxi,wx] +Cl-yi)xi"evki if yo
I
-
if yit; 0,13.

smaximizing the likelihood: ⑦ Ifinstead y;e;113, then

- milog[1 + expC-y, xi, wI

-I = I
↳ this is "logistic loss".

in
"""ene

I

sigmoid function
4

logistic loss

above optimization problem.
0.5~ 2WI. I
0 ⑧

-5 0 5 -4 ⑧



TRAINING LOGISTIC REGRESSION
Our gradientdescentalgorithm is

oyFrLoss(w)I
-

PREDICTION

,we take

-y=11X =x))(X,wxoI-
Isour decision boundary is still

T(X,w=03I
-

:"So we can predicty=sign(x,wa) as before,Es
butnow with confidencep(x,w).

MULTI-CLASS EXTENSION

Idea:For a class yeil,..., c, we want

to learn? w,...., was for each class.

,we consider the "softmax"function:

NX,W=Tw,, ..., wah): *sI
-

we map a real-valued vector toa probability
vector

-these are non-negative a sum tol

.....

⑤ Training:again, we use MLE.
-

I
.... tins"
&
2

*PCY=hIX=x;Witw.... wiI



Chapter 4:
Hard-Margin Support 
Vector Machines
INTRODUCTION
,we assume y=c-1,+13, and don'tuse HYPERPLANE

padding.
Perception:we find any weird, be

such that

I
b

Ii =(Xi,w +b mini"min 0 s.t. Yiy.0 Fi,

3

-a

nin

&

- I 1 wIlz
< =) min 0 s.t. yiis, Vi

-
...However, the larger the margin, the faster :yiyi =o

Perception converges. this is the distance

recall #mistakes,
MI? IlXillz=C, from xito H.

22.
z=min (xi,

w> 1. I
- X;

11 w*112=1. 7So, the goal ofhard-margin sum is to -
maximize the margin cassuming datais ....

-

--
-

MARGIN
......

⑦, we define the "margin"as the smallest

distance toa separating hyperplane H

among all separable training data,ie

imine inII H =iX:(X,w) +b =03
en

29
⑧ Hx
2,
we

"-
U margin:miniU, U,e

......

⑦ Our goal is tomaximize the margin among

all hyperplanes:
in find

minist. gieiso iI W, b
l

-



TRANSFORMING TO STANDARD

FORM

Note for the margin, Sw,b) d law, cbl has

the same loss for c30.

: So, we can fixthe numerator arbitrarily

to 1:

istmingies-II -> MintllWIR s.1. y;(xi,ws +b), 1 fil
-

COMPARISON TO PERCEPTRON
Perceptionarginsum

mint llwIl s.t. yi-s.t.YigisXi
Fi

quadratic programming -linear programming
- unique solution

- infinitely many
solutions

- maximal margin -convergence rate depends
on maxmargin

SUPPORT VECTORS

:it kirai=+)I <-1 Xi =

yi = - 1

isparallel hyperplanes:

->H =i,X:xX,w +b =03

I Ht =ix:(x,w +b =

+

13) the "supporting"
H
-

=iX:(x,w)
+b =
- 13 hyperplanes
-

"Supportvectors"are those where points

lie on the supporting hyperplanes.



LAGRANGIAN DUAL
.Thus, our problem becomes

:First, we show

I -
min [Iwll, 3.1. Y;(xi,wc+b)<1 Fi Elladeixill atrisitW,

i

llu-raise
B

I - min _i+25;8;9:4;xi,x; s.t. Eriyi=&
-

&=[0,,...,On] EIR";
WHY USE THEDUAL FORM?

&>0=0;0 Fi- .Idea:Ifdatais notlinearly separable, we

Proof. Leto be the second expression.
use a non-linear mapping of tomap the

see that
data.

& :Ming IllwI- 0;[yi(x;,
w +bi

we seti
=8, itfollows that1= +8, ⑰+rii;a(xi,q(x,If EiS.t. yi(xi, wx+ b)

< 1, then if

Iwhich is the maximal value I can

-
=0.

take.

Otherwise, it if Fi, yi(Xi,wx+bK,1,

then

&=IIIwI?-5i+b) - 1)
+Ve +ve

-> I llwil

Ifwe setd
=0 Fi, we get1

=E1lwi

which is the max
value I can take.

Therefore,
if Iis.t.

yi(cxi,w +b)< )X =mindwin, otherwise

- Mir llwit ifyiCX;,w+bK,

as needed. B

,we can swap
the mindmaxi

-

lwIY- ity,xi,w
+b) -1)I max
-

(because of"strong duality")

"Now, suppose we fix, and consider

3

the inner minimization problem.
Then w, b minimizes the function if

c =
=0.

RtLoss (w,b) =I1Iwll -0;5y;kx;,w
+b) - 1).

=>w =w - d;y;xi(
=0), =- zdi3i(=0)

.....
-> wdiYixi, zd;i

=
0.

⑦
y Finally, we consider the "outer"

maximization problem.
Plugging in our value of a above:

=>Loss(d==112d;Yixill? -(diyixi, ribixi
- bdiyi+ [di
-

0

=-Ill,diyixill? + I;s.t. dii=



Chapter 5:
Soft-Margin Support 
Vector Machines
MOTIVATION SOFT-MARGIN SUM

......
..... 8The "soft-margin sum"balances between

⑦, Hard-margin SVMs assume the data

margin maximization & the hinge
is linearly separable, butthis is not

IOSS:

......
always the case.

st,i=x+b⑦ We wantto adaptthis towork for I min
non-linearly separable data. ↓

......

& To do this, we will penalize our loss we penalize error

if the datafalls too close to the & small margin

boundary, or ifthe data is misclassified. SOFT VS HARD-MARGIN
SUM

For hard-margin sum, we have a hard

constraintthatyicx,wstb
Xi.

For soft-margin sum, we have a soft

constraint;the more you
deviate from

the margin, the heavier the penalty.

WHY THEHINGE LOSS?

g.Our goal is tofind

I min I
X

-Y*sign(Y) =P(yY07
~

true label predicted
label

where yei,0,13, Y =xX,w+b.
.....

THEHINGE LOSS ⑦2 This is equivalentto

,we wanttopenalize the case where =

YY=07:Eto_,Y3,7
y(x,w)+b) < 1, where y

=9113 is our I
-

true label, & 5 = cx,with is our

where Iis the indicator function,a

.....
predicted confidence.

lowis the 0-1 loss function.
⑦ Define the "hinge loss function"to

- See diagram to the leftfor 0-1

be

1
x

=x-yyst =435;nwisel
IOSSo

-
*note:we define

I- t < 1

CH - 0
/ t > 1eninge 10, t =1,

where & et-1,0]



BAYES RULE:(X) LAGRANGIAN DUAL

,Given an instance x, the "Bayes .Our soft-margin sum is

rule"is defined to be ziwiR+cEsl-y:xiws+bistI
igmiEto_,ys/X= -I Deriving the duali

max &i ti,

2 Note that Apply C.Ct,)
t
=maxict,,03 =

020,

and setti =1-y,(x;, wx +b) toget

Far[ICYr201x =

x) min

I y

~, b oc Illwil +i-yicxiws+bll,=argmin Pr(Yy-0(X=x)
~ cIR 00 ==0d; C fi

=argmin Pr(Y*sign(y)/X
=x) We can swap min with max, since strong

=M

-> dualityholds due toconvexity:

Thus, Bayes rule attempts tominimize the 11w12 +25;[1 - yi(xi,w+b)).

inconsistency between the actual responses
we can solve the inner unconstrained

& the predicted responses. problem by setting derivative to0.

CLASSIFICATION-CALIBRATED [LOSS] F =
w - zriyixi =0),b =

- [(iyi =0)

,we say a loss elyy) is "classification -
=>w =diyiXi, b =diy,=0.

calibrated"if for all X,
substituting these values back into the outer

argwinEtexIx- maximization problem:

I ·** Ill,di:xil+E,d-
has the same sign as y(x). - E,diy:xi. E,disixis-,brigi

-

In particular, the convex loss e is - 0

classification - calibrated iff
11 ,diyixi ll

-

① e is differentiable at0: &
I zi-Il Eriyixil=

.Ildigixil-i =1 i =1

② e'CO) < 0. 2

.Thus, the classifier thatminimizes =mc,:-IllE,diyixille
.....

the expected hinge loss also minimizes

8Thus, the dual form is

the expected
o-1 loss. 2

-Ildiyixils.t. [riyi
=07I 00= (i =1

I
=Idi;yig;xi,x,-d;

st. I
Ene

.....

Es Note thatif

① C-X, we geta hard-margin
sum, d

②C-0, we get
a constantclassifier.



COMPLEMENTARITY SICKNESS

"Letott=pcot, which we used

.....
in the dual proof-

⑤ Then note that2

0 + x0 =0=c, =c-k,0

2 t0 =0=0,=0 =+10

Ifwe let t=1-yiyi, then

01-y,y; =0,=c,0! =c =k,yi5,

Lie margin/wrong ideal
② ky,y, =2,*=0,=0 =)12y,5i

cie correctly classified with good
confidence)

3 1 =y,yi =020,42,020! -1
=yiyi

Lie correctly classified on HI,

*
we can use a to

identify the regions
which points are

located.

RECOVERING W& b FROM DUAL

,we can obtain wd b via

1figixi
-

.....

82 We also wanttoseta large enough

So, I pointsits
on one of HII:

ie y,5i =1.
- if C is too small, then do, so wo;

then classifier is trivial.

.Then we can recover b via

(w+b) =b =y - xx,w)I--
Since y

=11.

, we can then predictnew datavia

-

(x,w
+b).)I



Chapter 6:
Reproducing Kernels

THEKERNEL TRICK
MOTIVATION

, The feature map ofblows up the

"Alotof dataare notlinearly
dimension.

separable, and requires more complex

classifiers. 2 Butin the dual form ofsum, we

QUADRATIC CLASSIFIER only need to consider

8.The "quadratic classifier"has score

function

1x,xx+vcx,p +b) i- + I

where &zR**d, PERY, be1 are weights to I =(xxT,zzT +(v2x, 12 z >

be learned. + I

..... =(xz)2 +2(xTz) +18. We can then predictvia

-signifix.II- .Thus, the inner productin the higher
THEPOWER OF LIFTING

dimensional space can be computed by

,we can express the original vectors x& z.

f(x) =cx,ax) +vcx,p) +b
-& we can calculate (X,z) in Old)

=xxT,0> +vcx,p
+b

- time.

- , +(x,p) +b REPRODUCING KERNELS-XFe.I ,we call K: XxX+IRa "reproducing
-

X I I

hernel"if there exists some featureI
-xx.

(*):
transform 9:X- H such that

=x

zx
=b(x,z).)- I-

d..
where q(x) =(* I EIR

2
+d+1

/

w =() e,Rad+ Note thatchoosing of uniquely

determines k.
Aside:

we define the interproduct of 2 matrices

to be:for A =(aijaxd, B =cbijldxd.

(A, B) =9ijbij
② we define the vention ofa matrix

A =(aijdxd

dxd= (at) =
"Thus, the quadratic classifier is linear wit
&

y(x).



MERLER'S THEOREM PREDICTION
,h:XxXRis a hernel iff for :Suppose that0ce*2 optimizes the

any new and X., ..., XnEX, the
Kernel SVM.

.....

Kernel matrix K, where Kij
=k(xi,xj). & Then, we can recover

2

.....
is symmetric & PSD.

⑤ Terms:

①"symmetric". Kij =Kji
② "positive semi-definite"/PSD:

2

-Erik,o :
eg <polynomial hernell

h(x,z) =expC-11x-z112/0) (Gaussian hernell

h(x,z) =expC-11X-z112/5) Chaplace kernel) which we can getthe prediction from

REPRODUCING PROPERTIES by taking the sign.
Ifhi, he are hernels, then

① xh, is a kernel VR, 0;

② u,+ kz is a hernel;&

③ h, kz is a hernel;

...

2
If(hi) is a sequence ofhernels.&

then their limithe, if
itexists,

is also a
kernel.

KERNEL SUM

The hernel sum's primal form is

-

iw + E-gist, i =gxi,welI
-

and the dual form is

it
t igyig;wixx02=(I S.t. diyi =0-

where o & h are related via

Mercer's theorem.

ie k(xi,x;) =<P(xi),q(x;)>



Chapter 7:
Gradient Descent
MOTIVATION INTERPRETATION FROM TAYLOR

Many ML methods can be classed EXPANSION

,Note thatifwe take the Taylor
as optimization problems;in

expansion off at y, we get

infix,tcesthat[ #x)+Ff(x)cy - x) +t1y -x
-

. Hence
2
Assume Iis differentiable with

2

.....
gradientVf(x). Ziemin-y-x+y-x⑦ Idea:Choose an

initial pointx'* *R" and I
↳

iteratively calculate -

.Then see that

coSt

Altall_t. Ff(y

I
W

- negative gradient itisnee④ is steepestdecreasing
⑧ direction at that·-⑧o point⑧I.* - so iffunction is descenttemplate.

convex, aly reaches

weisnt minimizer STEP SIZE
EXAMPLE:PERCEPTION 8.Note the step size cannotbe too large

8.For perception, our gradientdescentis
or too small.

too large:alg diverges#

, 3ix: Imistake on xi3] -too small:aly is too slowI
- ......

⑦2 So, we need tofind a such thatthe

'stochastic gradientdescentupdate:
algorithm converges nicely.

⑰X#Imistake on XIS,

I I is random
-

EXAMPLE:SOFT-MARGIN SUM

Gradientdescentupdate for soft-margin
SVM:

-t,ehingelyiil yixilI b =b- +teningecyi)yi]-



CONVEX FUNCTION

:We say f is convexif for

any x, y EIR",

(M+fixTcy-xxI
L-LIPSCHITE CONTINUOUS

,we say If is "L-Lipschitz continuous"

ifLI-Ef(x) is positive semi-definite,

denoted as LII *2f(x),atall

xedom(f), where LEIR.

"Here,

istI
-

In other words, we say f is

"L- smooth"



CONVERGENCEANALYSIS FOR

CONVEX CASE

,let f be convex, differentiable & L-Lipschitz

continuous for some LEIR, with

dom(f)=IR".

Then if we do gradientdescentwith fixed

Step size t2I, we get

itf***I
-

We say gradientdescent
has convergence

2

rate oc it.

Proof. For any y, we can perform the Taylor
Ifwe setxt =x", x

=x'
then we get

expansion:

fly) -+(x)
+tf(x)T(y -x) +I(y-x)f2f(x)(y- x) fix) - fix"=lx

-

- x*-lix- x*12].

=>f(x) +vf(x)
T

(y-x) +I(y-x)(LI)(y-x) Ifwe sum over iterations,

(..(I] v2f(x) =(y-x)T(LI - v2f(x))(y-x),0) (fix"-f(x*))+Tix- - x*l-lIx"-**
=f(x) +vf(x)T(y-x) +Elly-x2.

-It [IIx*- **-IIX- x*]
Substitute

y
=

x
t
=

x - tVf(x):
=>It Il x- x

*

1.
=>

f(x) = f(x) +Vf(x)(x- t Xf(x) - x)
which implies

+ 11x- tf(x) -xI
Lt
2

=f(x) - t(1Xf(x)11 + IIIXf(x)II2 ↳f(x) f(x)+*
2tk

-Ifxe Then, since fix"") is decreasing, it

- ⑪ follows that

This tells us each update decreases the function f(x)) ,fix"s.
value by It 1l Wf(x)12. Therefore

Then, since of is convex, e

f(x)) ? f(x*) +Nx*
f(y) >, f(x) +Xf(x)T(y -x) 2tk

y
=x* =>f(x*) > f(x) +Vf(x)

T(x*- x)

=>f(x) =f(x*) +vf(x)Tcx - x*)

substitute this into 4:

=>f(x) = f(x) - EllVf(x) II?
=> f(x*) +vf(x)x- x4) - /Vfx)12

=>f(x)- f(x) =t(2t yf(x)+x-x4) - +4iXf(x)112]
- [2t f(x)Tx-x*) - tIVfIx)1

- 11x- x
*112 +11x - x*12]

= It [11x- x*11 - 11x - + xf(x) - x*12]

=It [11x-x*-11x+ - x11].



M-STRONG CONVEXITY STOCHASTIC GRADIENT

" we say f is "mustrong convex
" DESCENT

for some meiff(x) -mix? is 8.For decomposable optimization, gradient
descent involves

convex

CONVERGENCE ANALYSIS FOR STRONG Fort. fill
CONVEXITY -

ileto be m-strongly convex & L-smooth
where n is large,It is fixed.

.....

for L, MEIR. & In SGD, our step becomes

Then gradientdescent
with fixed step size

2

-

w-f(x),I is a random

t =msatisfies I indexit =I-

-"Illx-x*I, 022 The convergence
rate is OCal.

I- Since randomness leads toa large

In particular, the convergence rate is variance of the estimation of

OCW"), which is exponentially fast. gradient, sayrequires
more

GRADIENT DESCENT FOR NON-CONVEX iterations, although each iteration

CASE requires less computations.

8.For non-convexfunctions, there may existlocal

minimums thatare notglobal minimums.

:So, we cannotguarantee optimality,
and so we will focus on 11Vf(x)1122.

CONVERGENCEANALYSIS FOR NON-

CONVEX CASE

8.Letfbe differentiable & L-lipschitzcontinuous.

Then gradientdescent with fixed step

size t= Isatisfies

I.f*I mini =0, ...,k

-

In other words, the convergence rate is

O(n), which is optimal for deterministic

algorithms.



Chapter 8:
Multilayer Percepton
MOTIVATION

, we showed no linear classifier
EXAMPLE:XOR DATASET

can separate the XOR dataset. Let v =(ii).c=(-i)
.Fixes:

Then leto(t):it= (**I8!) CRES① Use a quadratic classifier;

② Fix the classifier butuse a richer Get w =(-2), b = - 1.

inputrepresentation. Then see that

MULTI-LAYER PERCEPTRON/MLP

8.Idea:Use a neural network & learn

x=(0),y =

- -z,=(j!(8)
+(-1)

the feature map simultaneously with the =>n, =(8).
linear classifier. =>5=ch,w) - 1

2- LAYER NN
=- 1. (...sign(y) =

sign(y))
We can do similar calculations for
X2, x3, x4.

MULTI-CLASS CLASSIFICATION

......

⑦ Steps:

⑧ IMinartransformation:z =Ux +c, VEIR,
2

CEIR

↳ ie z, =U,x,
+4,zz +c,

zz =Y2,x1 +Y2zxz +c2

8 Then, we do an element-wise nonlinear2

atration:anon-lineare
③wrtransformation:i=ch,w +b ·

learning featurean
④Outputlayer:signly) or sigmoid(y).

y

-

I p =

softmax(y)] learningnewregister
-



ACTIVATION FUNCTIONS COMPUTING THEGRADIENT OF

"choices for activation function: A 2-LAYER NN

I ③ reluct)=tt Iexperie in
the parametersinMULTI-LAYER NA

u& bz
.....

& The gradientof
the network is defined

3

by

Iit..
....

By Next, since relu(x) =max(x, 0), itfollows
that

,we need a loss & tomeasure difference ↳itsonerwisebetween our prediction o & truth y.
....

⑦ We also need a training setD= i, (xi, yil3 :
to train the weights we

SGD FOR MLP

ito train w, we can use gradient "sedescent:

atierfoxiyiws, I
I [Rof] (Xi,y;;w) =l[f(x,,w), yi] -
- where AOB =(A);,(B);jis the "element-wise"

,we can also justuse a random minibatch
product/"Hadamard product"of

the matrices

B,. . ., n3: A& B.

-erfxi,yiwl Proof. we use the chain rule repetitively.
-I Note. = 0-y-
- Thus

↳ tradeoffbetween variance & -

=. =co-yht
computation. Then

,we can also use a decaying learning 3 =5.8 =(0-y).1 =e
rate:

Next
t to

eg 4 =cio, boccet, c =.0 =uTc
Ino/iou, Ect Thus

=E =rTo-y) O relu'(z)

and so

=. =cuTo-y) reln'z) xT

lastly,

o ==uTo-y10relu'(z). I

=vT0-y)0 rel(z)

and we're done!



UNIVERSAL APPROXIMATION
THEOREM

For any continuous function f:R*-IR

and any 20, there exists a belt,

WEIRhd, bERRY & UEIR' such that

(f(x)- q(x)11y > 2.7I
-

where g(x) =UCo(Wx+b))
& o is the

Celement-wise) RELU operation.
in 11f(x)-g(x)II, < kx, s.t. g(x) is at least

"E-close"tofix.

:This implies thatas long as a 2-layer

MLP is "wide enough"(ie a large (),

itcan approximate any continuous function

arbitrarily closely.

WHY DEEP LEARNING?

.There existfunctions such thata 2-layer

MLP needs tobe exponentially wide to

approximate the function, whereas a 3-layer

muP only needs tobe polynomially
wide.

....

⑦2 In particular, deep NNs are more parameter

efficient.
DROPOUT

Idea:For each training minibatch, keep

each hidden unitwith probability a

?Essentially, there is a different& random

network for each training minibatch.

In particular, hidden units are less likely

to collude tooverfittraining data.

For testing, we use the full network.

BATCH NORMALIZATION

Idea:Normalize the inputover the
-

minibatch dimensions.



Chapter 9:
Convolutional Neural 
Networks
MOTIVATION

CONVOLUTION TONE-CHANNEL
In mups, it is easy tooverfit

INPUT]
training data.

...Idea:To mitigate this, we can use
.Idea:Each entry in the outputmatrix

⑦

weightsharing
& use a sparse

is the inner productofthe corresponding

matrix - "Subgrid"in the inputmatrixand the

CONVOLUTIONAL NEURAL NETWORK/ convolutional filter.
output

CNN
-

eg
4 34

! 2 4 3
-7 ->

2 34
-

- recall:(A, Bc =Z, Ai; Bij eIR
- this is like taking the inner product

THE FORM OFIMAGEDATA ofthe sliding "window"of the input

- we can represent matrix & the filter/hernal successively.
an greyscale WHY CONVOLUTION?
image as a

8.Note traditional image processing algorithms
matrixofvalues

rang ing from 0-255
use convolution.

-for RGB images, we

can representthem
as

a tensor (31 matrix)

with 3 channels, each

corresponding to R,G&B

values.



CONVOLUTION IMULTI-CHANNEL
INPUT] 'sAnother explanation:
: Here, we have k inputchannel

matrices corresponding tobe hernal channel input tensor

-matrices. ---
-: Idea: For each entry ofthe output -

matrix, we take the "sliding window
3

inner product"for each hernel channel- reinputchannel pair, and then sum the I
products together. /

->
entry

eg sliding' outputmatrix
* tensor

Kernel 2 outputmatrix 2

>
* E:I

i

outputmatrixcout

"I - 1

·itdistale
-

Cout=# of outputchannels

we can view convolution as successive

sliding inner products"on the inputtensor

& the cout kernel tensors.



CONTROLLING THECONVOLUTION WEIGHT SHARING:CNN=MLP

8.Hyperparameters: icetorvane2 to xlree①Filter/kernel size;

- eg 3x3, 5x5 ,we can define
- by default. # ofchannels on each

filter is the same as input (Xou,Xo, Xuz, do...., Yzz)EIR? I
② Number ofhernels; 3Then note

③ "Stride"- how many pixels tomove

- larger stride -neighboring outputs less
intwoxtaxu

the filter each time;&

I I
WooYo, + Wo,XO2

1similar WooXio+ Wo, XII WooX,+ Wo, X12
④ "Padding"- add zeroes around input + Wozo

+Wiz +WoY21 +Wil22
boundary.

-keeps boundary information lossless I =(iii) I
PADDING & STRIDE --

Hence

kex)=100, Condo.EIRY.
.....

OgNext, ifwe define the "circulantmatrix"as

->Wars:
Now wowo,woao"wiI I ⑧ I 4x9

0

0
0 0 0 woo Wa 0 Wo

-

,see that

SIZE CALCULATION Fate(x)=
Vector (W* x).

-
Sizes:

①Input:m xx xc .Thus, we can view convolution as

② Filter:axb xc multiplying a weightmatrix
with the input.

③ Stride:ext

④Padding:pxq
8Hence, we can view CNN as a MLP.

,we pad p pixels on the top/bottom butwith weightsharing-
& a pixels on the left/right. MLP CNN

,we move s pixels horizontally at

pixelsverticallyfontsieis

Twitt,
-

,we can show that

·
9 Hence, we can train a CNN faster

mi=(m-0

+1)x(
b
+1)

than a mup, since there are lessI
- parameters tobe learnt



?OO?Ioring"down-samples the input

size toreduce memory & computation.

⑤...To do this, we use the same

"Sliding window trick as in convolution,

and then take the maxor average of

each window togetthe output.

, we also have a notion ofsize/stride.

: Note thatpooling by defaultis performed
on each slice separately, so the number

of channels is the same between the

.....
input& output

⑦5If we setthe kernel size:inputsize, this

is known as "global pooling".

DEEPER MODELS

"Note deeper models (ie more layers) are

better butare more difficulttotrain.

RESIDUAL BLOCK

8.Idea:Add a
shortcutconnection thatallows

"shipping"one
or more layers.

:This allows more directbackpropagation
ofthe gradientvia

the shortcut.

: By "stacking"residual blocks, we can get a

- I

residual network"(or ResNet).



Chapter 10:
Transformers
"Transformers"were designed for ARCHITECTURE

IX....,y, ...,yumachine translation tasks; "Atthe 4th step:
ie given a sentence Xwith words/tokens

tokens y, ..., Ym.

INPUT & OUTPUT
.....

I

x, . . . ., Xu, produce a translation Y with

M
->
decoder

&
I
Our inputis X = (X,,...,xn) Cie the "prompt"),
and our outputis Y=(y,...., ym).

.
2

We want to find

xPly,....,emlx,..., xal

-

AUTO-REGRESSIVE/GREEDY METHOD
8.Idea:we repeatedly compute

mp(yulx....,Xn,y,..., a

-

..., ZurI x, ..., n

- TOKENIZER
eg

:The "tokenizer"divides the inputsentence

intothe individual tokens/words.

TOKEN EMBEDDING

A "twhen embedding"is a bijection from

tokens to vectors:

4 ISTART] is a special starttoken we ① We convertthe inputtokens
tovectors

use atinitialization.
ofdimension di

and

② convertthe decoder outputted vectors to

outputtokens.

We wantwords ofsimilar meaning
to be

close in the embedding space.



OSIONALENCOpenin the

ATTENTION LAYER

sentence changes itsmeaning.

,we"xaapositional encoding matic

-total,WI, six,sos(roical.I
wh
t, 2i

i =0
...., -1
-
↳ no parameter tobe learnt!

....

③ We then justadd
up tothe nod toher

3

embedding. ;uts:
① value VEIR**;

② Kay
KEIR*d;&

③ query
ofIRMxd -

.....

& RMxd Cm row vectors of
2 aput:

dimension al

x Putting ittogether. Idea:
-

ih
Letsoftmax(zi) =eis, for z =cz,...., zn).
Then wi =-91,4,3, w,z =29,,kz)-

=>istoutputrow:softmax(lv,+ softmax() va
-note itcontributes more tothe output

row.

n this is justa weighted average.

Similarly, the

ith outputrow -softwax(*),+softwax/rt.
Wil-
I9it-2i

wiz



MATRIX FORM OF ATTENTION FEED-FORWARD LAYER

·imahixform:let it,hitestbe
the now retreate .This is justa 2-layer MLP with

ReLU activation:

-/MLPIX) =maxCO,xTw, +b,Y).W2 +bu

·Tent)onein
-
We use layer normalization instead ofI batch normalization.

-

- Since batch size is often small

- OVERVIEW
Then Atransformer has the following tunable

Attention (V,k,0) hyperparameters:

nnt...sofmann I ② outputdimension of all modules, d=512;

③ # ofheads, h =8.I
-,RMXd

-

I
I I

① # oflayers,
N =6;

! TRANSFORMER LOSS

softmax))v,+...+softmax(hn" rat ,we train the transformer by finding

-cy,l0g43)
- e

-softmaxis a "row-wise"operation where

.....

⑦2 There is no learnable parameters so far! ① Y =Cy, , . . ., ye) is our outputsequence;d

- this is one-hot (ie 0 or 1

LEARNABLEATTENTION LAYER & ② Y =(y, ..., 5e) is the predicted
MULTI-HEAD ATTENTION

probabilities.

Idea:ReplaceatQwaalsw"Vare
are learnable

linear layers.
. Then our attention layer becomes

MorwwwereI
-

,we can add his linear layers in

parallel & concatenate theiroutputlater.

-outputdimension =64x8 =512

MASKED MULTI-HEAD ATTENTION
Idea:We mask future words, and input

the mashed sequence intothe attention

layer.



Chapter 11:
Large Language Models
COMPUTATIONAL COMPLEXITY PRE-TRAINING TASKS
,self-attention:O(nd+ud" per layer .PT:predictmasked words

OE IRNxd, KEIRdX
=>computing OKTtakes O(n2d) time. .BERT:predictmiddle words given

auERY, VERRYd context.

=>computing softmax(T=V takes ocud? -itis harder topredictthe

time. futurethan the past.
.....

8 Feed-forward:O(d) per layer aPT STRUCTURE

LABEL SMOOTHING

:Idea:Replace the label Y distribution

p(4/x) =Sucy with

Itl-Ees)Sn,y+Eest.I-
where C is the # of classes.

y

y'
- Ees is a hyperparameter.

BERT vS GPT
PRETRAINING

.BERTis solely an encoder, whereas

Goal:we wanttofind

GPTis solely a decoder.

m

- BERT predicts randomly-sampled middle -logTpx;Ix,,...,x;-;8137I j =1
word =>
- GPT predicts the nextword

log likelihood in predicting
PRETRAINING, FINETUNING, nextword x;given

INFERENCE previous tokens X., ..., xj-1

FINE-TUNING

Goal:we wanttofind

-g,P1yIX,:87-xE[log,,p1X;/X,;j8I
-pre-training takes weeks/months --

- fine-tuning
takes days toweeks/months tash-aware supervised pretraining loss

.Tasks: S

① "classification" - classifytextintoa class

-

② "Entailment"- determine ifa hypothesis
-

contradicts or follows from a premise
③ "Similarity"- predictiftwo sentences
-

are semantically equivalent
④"Multiple Choice"- given a context&
-

~ possible answers, choose the correct

answer



TASK-DEPENDENT ARCHITECTURE SENTENCE-BERT
.Idea:Use a twin network to save

the representations for future use.

j This drastically reduces the # oftimes

we do inference & the computation time.

GPT-2

"apT-2"uses the same training method

as GPT, butintroduces a new

larger dataset.
....
Itis good for "zero-shotlearning".⑧
2

BERT STRUCTURE

PRETRAINING
8.TA:using a masked language

model;

① randomly select15% inputtokens, GPT-3

change to [Mash];and ,GPT-3 uses the same training method

② add softmax topredictthe [masu] as GPT/GPT-2, butuses a much

to kens. larger transformer C100X GPT-2)

8.B:nextsentence prediction (NSP); :"The larger network introduces
2

given 2 sentences A & B, 50% of the ①In-contextlearning,
d

time B is the actual nextsentence ② chain-of-thought.

thatfollows A ("IsNext"), and 50% IN-CONTEXT LEARNING

ofthe time it is justrandom 8.Idea:Giving a few examples in the

C "NotNext"). prompthelps learning.

.The losses for Masked (M & NSP tasks

are weighted, summed a minimized.

ROBERTa

"Idea:Improve BERTby

① training the model longer,

② use bigger batches; CHAIN-OF-THOUGHT
③ use more datai 8.Idea:Giving the reasoning process in

④remove NSP;&
the prompthelps

the learning.
③ train on longer sentences.



GPT-3.5:REINFORCEMENT LEARNING

FROM HUMAN FEEDBACK (RCHF)

see CS486 notes for reinforcement
learning details

⑤
...

Idea:We
① use supervised learning for LLM

by BP/SGD;

② freeze the LCM & train the reward

model by a loss aboutranking;
a

③ freeze the reward model, update
the m

using our reward model, a maximize the

reward given by the reward model.

We use a ranking model as annotators

usually do notgive uniformly consistent

scores (for the given sentences), but

give uniformly consistentrankings.



Chapter 12:
Generative Adversarial 
Networks
MOTIVATION GENERATING SAMPLES

8.In generative modelling", we would like
Idea:Startby sampling the code

to train a network thatmodels a

vector zfrom a simple distribution

distribution.
Leg Gaussian).

.....Idea:We wanttodesign a generative ⑳ Then, the GAN computes a differentiable
2

model to generate images.
function a mapping z to an xin

MODEL data space.
,Given training datax,..., n Pdatax) & the

true datadensity;
.....

⑦ Parameterize Poly, the data densityestimated

by the model.

⑦
...

Goal:Estimate O by minimizing some

"distance"between Pdata (unknown data density)
& Poi

it)Pdate"polI
eg

After training, we can generate new

data xpo(X).
PUSH-FORWARD MAPS

,Let r be any continuous distribution on IRP

For any distribution p
on Rd, there

exist "push-forward maps"G:R"-IRd

such that

Frta(z)- p.
-

whoa, we can take tobe Gaussian.



LEARNING THEG NETWORK GENERATOR'S GOAL

.Idea:For a fixed discriminator D.

maximize a log loss over a (the same

loss for the discriminator).
.....

Ez Hence we wantto find

"Idea:To define the loss todistinguish
the 2 distributions, we can use a

- -
discriminator. I

max

xis real

z-N(0,I)

xis falle

GENERATIVEADVERSARIAL Fatociloge-scalei
NETWORKS

Hence, we wanttofind

ifflog(x))- IE[logCI-Dcall]max

x Pdata z-N(0,I)

- -I C D

-

xis real xis falle
e

2.Replacing expectation with the empirical expectation

Cie average):

-Egs(x)l] +E [log(1 - D(a(z(())
minI a D

xPdata
E -↳V(4,b)

SOLVER
.....

8, Idea:We can solve this via alternative minimization -

maximization:

①Gstep: fY?update
a by one-set

8."Idea:This is a "zero-sum"game
& DeStep:fix G, update D by one-step

between gradientascent

① the discriminator - distinguish real DECONVOLUTION/ TRANSPOSED
images fromfall images;a CONVOLUTION

② the gerator - generate images that look :Idea:Use "reverse"convolution toproduce
like the real one toconfuse the

a larger matrixfrom a smaller one.

discriminator.

DISCRIMINATOR'S GOAL

.Idea:For a fixed generator a, minimize

a log loss over D Coutputprobability

of isReal).

:If xis real, minimize -log DCx;

ifx is falle, minimize -log(1-D(X)).

In particular, we want

We use a similar "sliding window"trick.

ihaantloge(x]-IE[logsl-xcall]/ ① For each entry in the input, multiply it

I xis real

z-N(0,I)

xis falle

with the kernel;

- - ② Sum all the results together using

- sliding windows".



SOLUTION OFD* SOLUTION OFa*
letpg(x) be the density ofX "min max UCC, D) is achieved ifPg=Pdata.
estimated by the generator G.

.....

The optimal objective value is -log 4.
For a fixed G, the optimal discriminator

82 Thus, the CAN can learn Pdata
iS

itm*
-

exactly ifwe can solve minmaxVCG,DS

I exactly.
Proof. See that

Dproof. See that va, !) =E [log (x1] +Faoga-acacas
vca,D) =E [logD(x)] +E[log(1 - D(G(z)()]

-Paate*
x -Pdata zwNCU, I) (Let x =G(z))

:E
=(xPaatex) logD(x) dx +(,P((z) log(1 - D(a(z))) dz ~Paata

[logDY(x7 + E [log(1 - D, cx))]
x- Pg

↳ Let x =G(z)
(x)

-XxPdata' log D(x) dx +(,Pg(X)log(1 - D(x)) dx
-xFaatlog tegix glogpategies

=/x Pdata(x) log D(X) +Pg(x)log(1 - D(x))
For distributions P,0, we define

- KLCP110) = Ep[log 3.
Then

f(D(x))
Then the optimal solution is ra,pi)--logeat
D*(x) =argmax f(D(x).

In particular, we can write f(D(X)) as --log 4 +2 JSD(Pdata"Pg)

fCS): alogS +blog CI -S),
S =D(x) 2 - log 4

This is maximized atS -th where JSD is the "Jensen-Shannon

Thus divergence"(distance between a distributions).

-D*(x) = gamei Equalityholds iff Paata
=

Pg. as needed. I

as needed.1
:Thus, GAN works by minimizing the

Jensen-Shannon divergence between

generated & real datadistributions.



Chapter 13:
Self-Supervised 
Learning
"Self-supervised learning"is a

IMAGE ROTATION

subclassof unsuperisedlearningthe : ingdata:images rotated by multiple

representations through pretraining tasks of900 atrandom

for downstream tasks. Pretraining task:train model to predict

....,unsuperised:learning
with unlabeled data

a

tion degree
thatwas applied

&Steps:2

① Pretraining:build a task where the
-

label is pseudo & is constructed

from the unlabelled data.

② Downstream:
-

- Fine-tuning:all trainable parameters
-Linear evaluation:fixthe representation &

fine-tuning topping layers
prefraining:

enteratare
Enetuningsupdate

network a classifier

Linear evaluation:fixnetwork, update linear classifier

WHY?

Edea:Creating labelled datasets for each

tash is expensive, butthere is a

lotofunlabelled
data.

,self-supervised learning will also not

overfit.

Challenges:
①Selecta suitable pretraining task;

② No golden rule for comparison for

learned feature representations



RELATIVE PATCH POSITION

j'eringdata:multiple patches extracted

.ONENOctee random region in images
.....

~Imageask:train model to predictrelationshipi
8 Berningtask:fill in missing piece in the

....

⑤ image
between the patches

,we can improve performance by adding

a "GAN" branch.

IMAGECOLORIZATION

Peingdata:pairs ofcolor & greyscale

images
Pretraining task:predictcolors of the objects
-

in grayscale images

IMAGEJIGSAW PUZZLE

,reiningdata:a patches extracted in images
...

&
2 Reiningtask:predictpositions of all 9

patches



CROSS-CHANNEL PREDICTION CONTRASTIVELEARNING:SimCLR

8.Pretraining data:remove some ofthe
-

image color channels

ariningtask:predictmissing
channel fromjj

the other image
channels

,measuring agreement:

IMAGESUPER-RESOLUTION
.....

8. Reiningdata:pairs ofregular & downsampled

low-resolution images
.....

&
a periningtask:predicthigh

resolution image

that corresponds todown-sampled
low-resolution

image
'loss function:



Chapter 14:
Evasion Attacks
Idea:We wanttomodifytest FAST GRADIENT SIGN METHOD /

images tofool a fixed mL FGSM
model. Goal:We wanttofind

WHITEVS BLACK-BOX ATTACKS

⑭adr, w, y).max

"White-boxattacks"are when the I xadv
Sit

attacher needs toknow full info 11Xadv-X IlEl
-

aboutthe network, whereas this is

this is hard tosolve

not the case for black-boxattacks.
-Since C is non-convex

③UNTARGETED US TARGETED ATTACKS
...

we can approximate

"ertedattacks"are when the goal is

I d(C(Xadv,wh,y)Mel+(Xadr -X, FxACCCX,w,yIC
.....

topredict a wrong
label.

-⑦
2 "Targeted attacks"are when the goal is

Staylor expansion)-

......
topredicta targeted

label.
⑦ Hence, our problem reduces to

3

PRINCIPLE OFGENERATING
EVASION

laaan-X,Fx(x,w,e)
ATTACKS I

max

i closed form solution:

Ft. sign (Yx&C2(X,w).yl)I I-
Why? - Holder's inequality:(<a,b>)11alpl/bla.

I Then, for any Xady:Is
the classifier.

where i + = 1, p.9:
"

Idea:We wanttosolve objadu)=<Xadv-X, F,2(((x,w),y(

Th2Xaarl.32 =Il Xadv-XII & IIXx2(CX,
w), y) ll,

I IYadv-* (by Holder's inequ
--

< S. 11Xxd(C(X,w), y) II,
Differenttypes ofsolvers:

① Zero-order - only access to UN output Next, note
-

② First-order -access togradient
info

obj(xYav) =obj(x +3.sign(x2(C(X,w),y))
-

③ Second-order - access toHessian
matrix

=<E.sign(YxdCc(X,w),y)),-

"We focus on first-order solvers.
E Yxf((x,w),y)>3

=s. 11Xx2(((x,w),y) Il1.

Since signal.a =(a),
& d, norm

is just2(xil).
i =1

Hence, objcxta) is the upper
bound ofthe

objective function, and so is the solution of

the maximization problem. 1



FACTS ABOUT FCSM PROJECTED GRADIENT
.....

⑦, FCSM is a white-box, non-targeted DESCENT /PGD
evasion attack.

Idea: Improve BIM by using a truncation

operation:

Fit+W.sign(x 2ccxt! .y(l)
( -E,E)I
-
-

-for pixels with perturbation sizes.

"clip" truncates them toE

.PGD uses "random initialization"for x

:Issue:I needs tobe large for EGSM to

by adding random noise tothe original
be successful

BASIC ITERATIVEMETHOD
/BIM image from Unif C-2,E).

.Idea:Improve Fasm by repeatedly adding

noise tothe image xin multiple iterations

to cause
misclassification:

Fign(xf((x-,w),y))I xt=x
↓-

step size Note PGD needs tocalculate the
:Differences with Fasm:Dz

① Step size is different,a gradientmultiple times.

② BIM uses an
iterative procedure,

whilst
TARGETED PGD

Fasm uses a one-shotprocedure. .Idea: We can manipulate Pal to be

a targeted white-boxattack.

:
2 Pereneobjective

in

A(Xadul.I trelYad*f(x)

② Targeted:

⑭GeXadul Starget
-

&

"Is

...

rationfeein
3

sue:For a pre-defined s. xt may
~iolate

the constraintIX-XIg if t is large. 2)

-

TtipcytV. signs,dxt1, w1.

Ytme(l)

② Targeted:

Tt(X*"-U.signs,act us.Ytarget()
-



MULTI-TARGETED PGD

Idea: Do targeted attacks with PGD

the

for all targetclasses
and choose

one thatcan fool the classifier.

:This is an untargeted attack.



Chapter 15:
Robustness
DEFENSES AGAINST EVASION ATTACKS: ROBUSINESS- ACCURACY TRADE-OFF

: Adversarial training suffers from a

ADVERSARIAL TRAINING :, Idea:

Idea: reduced accuracy on clean samples;

- is the "robustness - accuracy
trade-off".

-

min E max Loss (((x', y> "I C
x,y-D x'z ((X)

2
To quantifyrobustness, we can use the

- robustness error

↓ ↳
outer min: inner max: -ECITExedxS1.fex07.)mimic behaviors update weight x,y-D

of attacks ofneural nets I y =11, f:XtRRis our classifier
-

:The adversarial examples attack the latest
& the natural error

iterate ofthe classifier.

FaSM IME[I[f(x, = 07]x,y-D-
Idea: Use Fasm to solve

iswe wanttofind
the inner maximization.

ENSEMBLE ADVERSARIAL TRAINING itat(e)+I I
Idea:Use a setofadversarial examples I
-

created by several fixed classifiers to CLASSIFICATION-CALIBRATED
train the model. SURROGATELOSS

PGD "Idea: We wantto design a differentiable

"Idea:Use PGD to solve the inner max.

surrogate loss for the trade-off.

Butthis is computationally expensive to

TRADES
2

do

Wewort, ******heI
classification-calibratedloss les

0-1, exp, hinge, etc)

:For any distribution D, f, f(x) & MCU,

we have

-RatTRADES Loss (f) -RYy
-
& for any f(x), there exists a D, f &

x>0 such that

itat TRADES LossCf-R**-
where RY & Ratare the minimal values

ofRy(f):
=x,yEp4(f(xy) over f & Rnat'f

respectively.



LIMITATIONS OFADVERSARIAL

TRAINING

:Idea:Atmay notconverge.

If f(x) =wT(x),
the training dynamics

ofATmay
lead toa cycle.



Chapter 16:
Differential Privacy
"We need toacknowledge privacy DATA SCIENCELIFE CYCLE

concerns ifwe train ML models on

private data.

MEMBERSHIP INFERENCE PRIVACY CONCERNS IN DATASCI

Goal:Determine whether a data instance x* LIFE CYCLE
is partofthe training datasetof a Idea:Cloud services requires statistics

I

target
model.

leg browser configurations) to monitor its

- we assume we have black-box access to

....performance.the model.
⑦2 However, users do not want togive up

=
2
Attach technique:shadow training

their dataas itis very identifiable.
.....

⑦ Moreover, often analysts will wantto

analyze sensitive datasets.

DIFFERENTIAL PRIVACY /DR

,we say thata mechanism satisfies DP/E-DP

-for all inputs X, X thatdiffer in one
iff

entry, we have that

MS)-e "P(mix' es)
-
- probabilityis over all models M

-we can then use these shadow models
for all outputs S.

to replicate the targetmodel
-lower a c =) more privacy

-& then use these to form the attack

model

Note:these are

I notrestricted tospecific models;&

② is prone tooverfitting.

the more prediction classes we have,

the worse the test accuracy.

LOG PERPLEXITY
8"<log) perplexity"is a measurement Note:

ofhow well a model predicts - ifX,X' differ by adding/removing an entry, this

is called "unbounded DP"
a sample.

- ifX, X' differ by replacementof
an entry (ie (X1IX'K,

then this is called "bounded DP".

...

Intuitively, the adversary should notbe able

.z
to use the outputS todistinguish between

any X, X'
.....

. Thus, privacy is notviolated ifone's

information is notincluded in the input

dataset.



DP APPLICATION:DATACOLLECTION
BASIC COMPOSITION

8.Ifm =(m. , . . ., Mu) is a sequence Idea:We can use DP to quantify

of a-DP mechanisms, then m is the privacy ofa datacollection method.

KE - DP.

POST-PROCESSING
then FCm(X)) is also

:If MCX is a-DP,

a-DP,where Iis some function

transformation.

GROUP PRIVACY

Ifmix) is a-DP, & X, xdiffer in

K entries, then

We4p(mix'es) vs.I-
LAPLACEMECHANISM

add

.Idea:To achieve DP, we can

ie

Laplacian
noise to our model.

0=4?i *-p
-no privacy:W=o

complete privacy:
W= I

i specifically, ifwe have a neighboring

databases D, D', then for some output

0:

y Laplace (2), paf & exp) M=0) e esteI 0)

e
E

mean=0, variance:222 -
SENSITIVITY (S(q)) where M is our model.

,letg:ItRbe a query.
Then

we define the "sensitivity"of9, S19I, BOUNDING SENSITIVITY

to be the smallestnumber such thatfor Idea:In some cases, the sensitivity of

any neighboring tables D, D'Lie thatdiffer a query may
be large or infinite.

by one rowl, we have To mitigate this, we can use

xiqCD's)scaI. ① "<pping" - enforce xata, b) and discard

I- dataoutof
the range

2
Ifthe sensitivityofthe query is S,

- butthis adds bias to the output.

then ifwe use
② "subsample & aggregate"- partition Xinto

-

A X,. . . ., Xn, apply of over each
subset.

in our Laplacian noise, we are guaranteed and aggregate
the results.

to get s-differential privacy. APPROXIMATEDP/ (2-81-DP
,we say a mechanism is "approximately

pp"iffor some E, S,

:e"P(M(x)= S) +SI-
for all neighboring data x& X'.

-note I should be very
small.

j
2
To achieve this, we can add Gaussian

noise.



DP-APPLICATION:DP-SGD

:"od:
I

①Sample a
"lot"ofpoints ofexpected

size L by selecting each point

to be in the lotwith probability I

② For each pointin
the lot, compute

the gradient
FeCO, xy)

& clip so

ithas le norm
C

③ Average the clipped gradients
& add

Gaussian noise

O Take a stepin
the negative

direction

4

ofthe resulting vector

⑤Repeata
times

8.Limitations:
① Slower than SGD

② Hyperparameter tuning

E-LOCAL DP

,we say
M provides

"s-local DP"iffor

& x', we

all pairs ofsprivate) data x

have

(5)=

eP(m(x) es)I-
for all outputs S.

In particular,
M takes in a single

user's data, whereas for normal a-DP,

M takes in all users' data.



Chapter 17:
Private Data Synthesis
SYNTHETIC DATASET

IMPROVED METHOD
j,a"synthetic dataset"is a stand in

for the original datasetthathas the Idea:Selectively
learn some

"lowway

same format & accurately reflects the

marginal
distributions with noise, a combine

statistical properties ofthe original them in a way
to approximate

the

dataset, butonly contains "fake"records.
jointdistribution.

....

mod::Note thata synthetic datasetdoes &
2

① Learn the correlation among
the

notguarantee privacy.
attributes to select marginals;

:The generation process is 3-DP, & all

② Learn the selected marginals;
other queries on

the synthetic dataset

③ Combine the marginals to get

is justpost-processing. the jointdistribution;
I

: However, there are no accuracy guarantees. ④Sample from this jointdistribution.

NAIVE METHOD PRIV BAYES
-

I,method: :Idea:PrivBayes is a Bayesian
network

①Learn the data distribution and preserve
we can use to

some properties; 8learn the correlation;

② Add noise to the learning process:&
② privatize

the correlation learning, a

② sample from the learntdistribution.
③ combine the selected noisy marginals.

:Challenge:whatproperties
to preserve a

how to preserve
them?

LARGEDATASETS

,Idea: when the datasetis large, the

number ofcombinations
in the joint

distribution"is
intractable.

So, privatizing
each countis expensive

,method:
wrtthe privacy cost, and hence is

① Construct a suitable Bayesian network N with

inefficient. 2 - DP;

② Compute the conditional distributions implied

by N;
&

③ Add Laplace
noise;

④Generate synthetic
data by sampling from

~, by approximating
the jointdistribution

using factorization
ofN.,


