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Chapter 1:
Introduction

REINFORCEMENT LEARNING PROBLEM
PROPERTIES OF TASK

ENVIRONMENTS
.Task environments can be:

I fully us partially observable;

- famerrable:agent
knows state ofthe world

from the stimuli
Our goal is for the AItolearn to

-patillobservable:agent
does notdirectly

observe

choose actions thatmaximize rewards.

the world's state

AGENTS & ENVIRONMENTS
② deterministic vs stochastic;

->
inputs - deterministic:nextstate

is observable atany
-

time

-
- Stochastic:next

state is unpredictable
-

whatmakes the Al ③ episodic vs sequential;
able toperform the

-

eisodicagent's current
action willt

actions

8.The "agentfunctionmaps percepts
toactions;it

- sential: agent's currentaction will affecta

f:P -A.
future action

.The "agentprogram"
runs on the physical architecture

④Static vs dynamic;
to produce fo

uticmodel ispaired
on

tinusin
RATIONAL AGENTS

⑤ discrete is continuous.A

A"rational agentchooses
whichever action that

⑥ single agent
us multiagent.

maximizes the expected value ofits performance

measure given
the perceptsequence

todate. *the former option is "easier"than the latter.

Note thatrationalityis notomniscience,
butrather

learning & autonomy.
PEAS

.PEAS"helps us specify the task environment:

measure;
① Performance

eg safety, destination,
etc

② Environment;

eg
streets, traffic, etc

③ Actuators;a

eg steering, brakes, etc.

④Sensors.

eg aps, engine sensors, etc.



Chapter 2:
Uninformed Search 
Techniques
SIMPLE PROBLEM SOLVING AGENT SEARCHING

,we can visualize a state space search in

terms of trees or graphs;
①nodes correspond to states;&

② edges correspond totaking actions.

.....

& These "search trees"are formed using
2

"search nodes", which have

①the state associated with it;

⑦parentrode& operatorappliedthee
③ costof the path

so far;&

8.This can only tackle problems thatare

④depth of the node.

① fully observable;

② deterministic; EXPANDING NODES

③ sequential; :"Expanding a
node"refers to applying all

④Static;
legal operators to the state contained

③ discrete; &

⑥ single agent in the node & generating nodes for all

corresponding successor states.

EXAMPLE:TRAVELLING IN ROMANIA ⑧
ie o%......."o
i

GENERIC SEARCH ALGORITHM

Algorithm:
① Initialize search with initial problem state.

② Then repeat:
-if no candidate nodes can be expanded,

- initial state:In Arad return failure
- actions:drive between cities

- otherwise, choose a leaf node for

- goal test:In
Bucharest

expansion according toour search

- path cost:distance
between cities

Stratesmode contains a goal statea

EXAMPLE:8-TILE PUZZLE
return the solution.

- States:locations of 8 tiles

& blank -otherwise, expand the mode by

- initial state:any state
applying the legal operators to the state

actions:up, down, left, right associated within the node, I add
the

- goal test:does state match desired

resulting nodes to the tree.

configuration
- path cost:# of steps



EVALUATING SEARCH ALGORITHMS DEPTH- FIRST SEARCH
.....

,we can use the following properties when 8. Refer toCS341
notes for details;

evaluating search algorithms: we expand the deepestnode
in the

① "completeness"- is the algorithm guaranteed to currentfringe of the search tree

-

find a solution (ifitexists?
.....

first.

⑦z ation:
②

inality"pdoestheaortain thee
-may getstuck going down a long① Complete:no

③ time & space complexity. path
-

.. O Optimal i no

& We consider the following variables: 2

- mightreturn
a solution which is

2

① "branching factor (b) - the # of children each
deeper (ie

more costly)
than another

node has solution

③ Time:O(b")
② depth ofshallowestgoal node (d);&

-note we might
have mad

③ max length ofany path in the state space (m).

④ Space:O(bml

BREADTH-FIRST SEARCH
DEPTH-LIMITED SEARCH

Refer toCS341 notes for details, .Idea:Treatall nodes atdepth l as if

we expand all nodes on a given
level before any

they have no successors.

node on the nextlevel is expanded.
-try tochoose

a based on the

.Evaluating the algorithm: problem

① Completeness:yes
if b .This avoids the problem ofunbounded

trees.
② Optimality:yes ifall costs are same

....
③ Time:1 + b +... +

bd =0(b) ⑦ Evaluation:
3

①Time:OCb
④Space:OCb").

② Space:
Olbe

*all uninformed search methods have exponential time ③ Complete:no

complexity. ④ Optimal:no
UNIFORM COST SEARCH

ITERATIVE-DEEPENING
.

Idea:we expand the node with the lowsthe

.Idea:repeatedly perform depth limited

I
t

search, butincrease the limiteach

...

We can implementthis using a priority& time.
2

queue.

: LetC* =costof optimal solution & E =min action

cost.Then

① Completeness:yes if exo

② Optimality:yes
③ Time:0(3 */27
④Space:0(b C*/9)

.....

⑦
2
Evaluation:
-

① complete:yes

② Optimal:yes

③ Time:Ocbds
-

④space: bd)
Time:
- Climit=1) I

(limit = 2) I +b

Climit =31 I +b +b2

ct)
Climit=a) 1 +b +b2 +...

+bd

-
d +(d-1)b +(d-2)b+...

+bd=0(bd)



Chapter 3:
Informed Search 
Techniques
MOTIVATION GREEDY BEST-FIRST SEARCH

In search problems, we often have additional Edda:Use n(n) torank the nodes in the

knowledge aboutthe problem. fringe & expand the node with the

eg with the "travelling around Romania", we know lowest h-value.

dist. bu cities Lie "greedily"trying
tofind the least-cost

↳ So we can find the overhead in going solution).
.....

the wrong
direction ⑦2 Example:

:"Our knowledge is often aboutthe "ment"
Ez

ofnodes
-path using

INations ofmerit.
13 I algorithm

3

① now eqesive itis to getfrom
a state i

->

toa goal;
⑦ how easy itis togetfrom

a state

....Note greedy best-firstis notoptimal.⑤
toa goal. 3

ey
in the above example,

HEURISTIC FUNCTIONS:h(n) - path found
has cost =6.

,we need todevelopdomain specific - butcheaper path is StAzB-C-G with

-

heuristic functions"n(n), which guess
the

cost =6.

de
costof reaching the goal from no Itis also notcomplete, as itcan be

n. stuck in loops.
....
In general, ifhin,<h(nz), we guess reaching

I
stuck in a loop!⑦ ey2

.....
the goal is cheaper from , than from 12.

Es We also need I-B
① h(n) =0 if n is a goal node

② him) >0 if n is nota goal node. 1
- butifwe check for repeated states

then we are okay

8.This algorithm uses exponential space &

worst-case time.



A* SEARCH n(n) IS ADMISSIBLE => A
*

Idea:Define f(u) =g(n) +h(n), where
IS OPTIMAL
.....

① g(n) = cost ofpath tonode n

⑦Ifhin) is admissible, then A*with

② h(n) =heuristic
estimate ofcostof reaching

tree-search is optimal.
goal from

node n.

proof. leta be an optimal goal state,

We then iteratively expand the node in

& f(G) =f* =g(a).
the fringe with the lowestof value.

LetG2 be a suboptimal goal state,
.....

- path
taken

2 Example:⑦
⑧ search tree

in f(Gz) =g(42)f*.S
f = 0+4 =4

(Since n(4,) =h(G2)
=0)

↓ st-> heuristic
⑧ Assume, for a contr, thatA*selectsA
f = 2+3 =5

of -C

G2 from the queue;ie
A* terminates

B with a suboptimal solution.

f=3+2=5 f=b+1 =7
Letn =

node currently a leaf node

↓
on an optimal path toG.

8C
f = 4 +155

-@f=6+0
=6 ...

.....

⑦ A*should terminate only when the goal state3

is popped from the queue/fringe.

As

value G

eg
S I

· Gz8

- Since his admissible, f*, f(n).

"
Ifn is notchosen for expansion over

④Gg ↓ G2, then finl, f(Gz).

Pfy Thus f*3 f(Gz). Since h(G2) =0, thus

we do notstop 0
f*>gCGz), a contr

A*
here because Ag REVISITING STATES IN

Si Note A*is notoptimal. is still in the
M

,irration: As**-B
queve.

-Ya, "A7 ⑧ 8 0

*

- A*finds S-G with cost 3 Inertnapatie
-butthere is a cheaper path StAtC

with cost 2. chea
...Ifwe allow states to be expanded again,

- A*performed poorly because our

we mightget a better solution!
heuristic was notgood.

ADMISSIBLETHEURISTICS] CONSISTENT THEURISTICS]

8.Leth*(m) be the true minimal costtothe

goal from node n.

,
weisconsistent".e

Then, we say
the heuristic hin) is

" Note thatA*graph-search with a

"admissible"if

Fr persistent heuristicis optionall

jo"Note thatA*is

.....

8In particular, admissible heuristics never overestimate acomplete if h(n) is consistenti

2 - f always increases along any path
the costtothe goal.

② Has exponential time complexity in

the worst-case;&

- buta good heuristic helps a

lot

-OCbm) if heuristic is perfect

③ Has exponential space complexity.



ITERATIVEDEEPENING A*

(IDA*S
.Idea: Like iterative deepening search, butchange

f-costrather than depth in each iteration.

.This reduces the space complexity.

SIMPLIFIED MEMORY-BOUNDED A*

CSMA*)

Idea:Proceeds like A*butwhen itruns out

of memory itdrops the worstleaf node

Lie one with highestf-value).
.....

8 Ifall leaf nodes have the same f-value, then

drop the oldest& expand the newest.

:This is

① optimal;&

02 complete if depth of shallowestgoal node <memory
size.

OBTAINING HEURISTICS

8.One approach togetheuristics is tothink

of an easier problem & let h(n) be the

costof reaching the goal in the easier

problem.
......

⑦ We can also
2

①precompute solution costs ofsubproblems &

store them in a pattern database;or

② learn from experience with the problem class.

EXAMPLE:8-PUZZLE GAME

,we can relaxthe game in 3 ways:

① We can move file from position ASB if

Ais next to B lignore whether
-

position is blank)

② We can move tile from position A+ B if

B-blank (ignore adjacency)
0 We can move tile from position A- Berless.3

.....

&2 B leads tothe "misplaced tile heuristic". (hy

-tosolve this problem we need tomove

each tile into its final position.
- # ofmoves:# of misplaced tiles

- admissible

! O leads tothe "manhattan distance heuristic". (h,l

-tosolve this we need toslide each tile into

its final position
- admissible

8. Note h, "dominates"hyiihyca)h,(n) Xn.



Chapter 4:
Constraint Satisfaction
INTRODUCTION

EXAMPLE:8 QUEENS AS A
.These are useful for problems where

CSP
the state structure is important.

0 8 queens as a CSP:

:In many problems, the same state can be
-variables:Vij, ijj=1,...,

reached independentofthe order in
- domain ofeach var:10,13

which the moves are chosen.
-constraints:Vij =1 =Vin

=0 FkA;

.So, we can try to solve problems efficiently
Vij

=1 =Vyj
=0 Xki

by being smartaboutthe action order.
similar constraintfor

4- QUEENS CONSTRAINT PROPAGATION diagonals
↑:Idea:Removeconflictingsquaresfrom

consideration

,Vi,
=8

# ..
EXAMPLE:MAP COLORING

CONSTRAINT SATISFACTION PROBLEM

(CSP)

A"constraintsatisfaction problem"is defined by

somei, V, D, C3, where

.vinY? is a setofable,here
-variables:WA, NT, .... 5 (the regions)
-each var has the same domain:

i red, green, blue 3
Diis the setof possible values for each Vi;

- no 2 adjacentvariables have the same

& value

③ c =iC,. . . ., Cm3 is the setof capaints
Cie WAINT, WAFSA, etc)

STATE

"A"state"is an assignmentofvalues tosome or

all of the variables;

ie Vi =Xi, V,=xj, etc.

CONSISTENT [ASSIGNMENTS

We say an assignment
is "consistent"ifit

does notviolate any
constraints.

SOLUTION
:A "solution"is a complete, consistentassignment.



PROPERTIES OF CSPS EXAMPLE:MAP COLORING

,Types ofvariables:
-

① Discrete & finite;

eg 8-greens, mapcoloring

*We focus on this in this course.

-in
② Discrete with infinite domains;a

WA: blue WAIred WA:green

3

eg job scheduling

-a t-green"O continuous domains.

...
Types ofconstraints:⑦ -

2 :

"Unary constraint":relates a single variable0
MOST CONSTRAINED VARIABLE

to a value -

-eg
Queensland-blue HEURISTIC

② "Binary constraint":relates two variables Idea:Choose the variable which has

the fewest"legal"moves.
③ "Higher order constraints":relates, 3 variables.

CSPs & SEARCH

,we can formulate CSPs as a search problem:
① We have N variables V, ..., Uni

② a valid assignmentis i V, =X.. ..., Vn=Xn3, ochen
where values satisfythe variable constraints.

....

In a tie, choose the variable with
③ States:valid assignments ⑦

2

④initial state:emptyassignment the mostconstraints on the remaining

variables.
③ successor:V,=x,, ..., Vn=Xu3 -

Lie "mostconstraining variable").

9 V, =x,,. .., Vn=Xn, Vn+i=Yn+13 LEAST CONSTRAINING VALUE
⑧ goal test:complete assignment HEURISTIC

BACKTRACKING SEARCH :Idea:Given a variable, choose the

"leastconstraining value", is the one

thatrules outthe fewest values in

the remaining
variables.

- this is DFS thatchoose values for one variable at

a time

- we "backtrack"when a variable has no legal
values toassign



FORWARD CHECKING

Idea:We keep track of remaining legal
values for unassigned variables, &

terminate search when any variable

has no legal
values.

:This helps us detectfailure early.

EXAMPLE:MAP COLORING

WA =R

0=G

v
=B E

this is the empty set;

=>the currentassignment
does

notlead toa solution.



Chapter 5:
Uncertainty
Refer toSTAT231/330 for more details.

CONDITIONAL INDEPENDENCE

..... .Two variables X, Y are "conditionally
Oz We use "w" to denote the complementof

independent"given Zif

an event(ie wAI.

P(X=x/z=z) =P(X=x)Y=y,z=z)

BAYES RULE

:For 2 events A, B, note
(y=y17

=2) =P(X=x1z=xxyyz=x)
TN-

I
=> xedom(X), yedomLY), zedom(Z)
en

.....I ⑦ Ifwe know the value of Z, nothing- 2

Proof. PCA)P(BIA) =P(AMB) =P(B)P(A1B). we learn aboutI will influence

:PCBIA):CAB 1
our beliefs about X-

" In particular, itallows us to compute VALUE OF INDEPENDENCE

a beliefabout hypothesis B given If X., ..., Xn are mutually independent,

evidence A. then we can specify the full joint

⑦ distribution using only a parameters
3

Lie linear) instead of2"-1

I ....

Cie exponential).
2 Although mostdomains do notint ⑦

amountof conditional independence.

exhibitcomplete mutual independence,

they do instead exhibita fair

NOTATION:P(X)
PROBABILISTIC INFERENCE

8we define "P(X)"as the marginal
Edea:Given a prior distribution P(X) over

variables X of interesta given new distribution over a number, 4(X) e

evidence Eze for some variable E, distribution.
-

revise our degrees ofbelief: it the
NOTATION:PLXY)
.....

"posterior"P(XIE=e). 8We define "PCXX)"as the family

of conditional distributions over X;one

ISSUES
for each yedom(Y).

ispecifying the full jointdistribution for X,...., Xn

requires an exponential number ofpossible

"Worlds".

: So, inference is also slow since we need

to sum over these exponential number of

worlds. P(X,.. .. Xn)
-

↑CX, . . . ., Xi-, it...., Xn (Xil
=

z...[z... ZPIX...., Xn)
x, xi - 1*i+Yn



EXPLOITING CONDITIONAL

INDEPENDENCE:CHAIN RULE

S is independentof E.C, G given L

L is independentof E,c given a & so on.

=>PLS)2,4,,E) =P(S1L)

P(L1G,,E) =
4(L1a)

P(G1C, E) =P(a)c)

Then

PLS,2,4,2, E) =P(S),4,,E)P(L14,,E) P(GIC, E)
-

P(CIE) P(E)

=P(SIL)P((16) P(GIC)P(CIE) PLE).
-

:In this, we can specify the full

jointdistribution by specifying the

five local conditional distributions.



Chapter 6:
Bayesian Networks
BAYESIAN/ BELIEF/ PROBABILISTIC CONSTRUCTING ABN

NETWORKS (BN) .Idea:

"Bayesian networks"are graphical representations ①Take any ordering of the variables, and

ofthe direct dependencies over a setof then for X to X,:

variables, alongside a setof conditional - letPar(Xn) be
any subset

probabilitytables (CPT) quantifying
the S2iXn,..., X,3 such thatXn is

strength ofthe influences. independentof X. .. ., Xn-13-5 given

- continue this for X...., X,
② In the end, we geta DAG, which is

also a BN by construction.

Note the order in which we consider

the variables changes the resultantBN!

eg order:aches, cold, flu,

order:mal, cold, flu, aches malaria

--
malana flu cold malaria =flux cold

&...In particular, ithas x +d ↑
① ADAG with nodes -variables X;;& aches

aches

② A setofCPTs p(XilParents (Xi)) for COMPACTNESS
each Xi i.In a BN, ifeach on is directly influenced

:"Key notions: by atmostbe others, then each
Es

①parents/children ofa node; CPTwill have atmost 2" entries.

...

② ancestors/descendants of a node; d 82 So, the entire network ofa variables

③ family:setofnodes consisting ofXi&
is specified by n.z" parameters.

its parents.
↳

SEMANTICS OFABAYES NET
1

Id 82malana flu malaria =flue cold 2

Idea:Every Xi is conditionallyindependentof x +d ↑
all its non-descendants given its parents; aches

g aches I

1 +1 +1 +8 =11 1 +2 +4 +8 =15

eiPar(Xi))=
Prix, 1Parexill]I AS NonDescendants(Xil-

...
Also, the jointdistribution

is recoverable using
Ez

the parameters
(CPTS) in the BN.

mininiI
-



d-SEPARATION SIMPLE FORWARD INFERENCE(CHAIN)

:First, we say a setofvariables E .Idea:To compute the marginal distribution,

"d-separates"x& Y ifit"blocks"
we can use simple forward "propagation"of

- probabilities.
every undirected path in the BN

nee eg
between X& Y.

TESTING INDEPENDENCE
8.Then, X& Y are conditionally independent

given evidence E ifE d-separates
X

& Y

BLOCKING IN d-SEPARATION

: LetP be an undirected path from x=Y.

Then the evidence setE "blocks"path P

if

① one arc on P goes intoZ & one goes P15)
-

mEism.Itmarginaliseene
outof Z, & ZEE;

Xen zs y <chain rule)

② both arcs on P leave Z& ZCE;er =IP(5/m)P(MIET) PCET)
M, ET

conditional independence)
xeneex

③ both arcs on
P enter z
& neither z nor

= I4(5/m)E, PCMIET) PLET
E. -

any ofits descendants are in
all these terms can now

Xen zenx
be found in the CPTS.

! ,we can do something similar ifwe
Descendants (z)

have "upstream"evidence.
EXAMPLE

eg P(JIET) =[P(5,mIET)

- IPCJIM, ETPCMIET)
= IP(5/m)P(MIET)
mine

terms found in CPTS

SIMPLE BACKWARD INFERENCE

,Idea:For "downstream"evidence, we must

reason backwards, which we can use

Bayes' rule:

I
eg (using same BN as above)

O subway & thermometer
③ Imalaria PLETIJ) =

OPCIIET)PLET), 0=p)-

- dependent
- independent

- butindependentgiven
-dependantgiven

fever = &IPLJ,MIET) P(ET)
the fle M

↳ since flu blocks the or thermometer

only path crule 1) ↳ rule 3 =P15/m, ET) P(MIET) PCET

O aches & fever O subway & exotic trip
= - IPLJ1m)P(MIET) PLET).2 4

- --

- dependent - independent m

- butindependentgiven

the flu
- dependent given we can then calculate P25) = ZPCJ/ETPCET).

↳ since flu blocks the thermometer

only path Crule 2) ↳) rule 3



VARIABLEELIMINATION RESTRICTING FACTORS:fX=x
The "variable elimination"algorithm is "Letf(x,y) be a factor with variable

a general inference tool for BNs.
X & variable setY.

FACTORS Then, we "restrict"factor - toX=x,

"A "factor"is a function f(x......, Xul. in h =fx=x, by doing

.We can representfactors as a table

Entf(x,y).
ofnumbers, one for each instantiation of I
-

.....

the variables X,...., Xu. eg
Oz We denote f(x,y) to be a factor over the

variables XWY, where x&Y are

sets ofvariables.
...

⑧ Note each CPTin a Bayes net is a

4

factor of its family
NO EVIDENCECASE

eg P(C/A,B) -factor ofA, B, C. .IdeasComputing prior probability
PRODUCT OF FACTORS:f9 of the query variable X can

Let f(x,y). g(Y,z) be factors with variables y
be seen as applying these

in common.

operations on factors.
Then the "product"of f & g, h=fg, is

EXAMPLEI
defined to be

(=f(x,y) xg(y,z)) eg

eg P(C) =2,P((B) P(B(A)P(A)
I IP(IB)ZP(BIA) P(A)

-f(B,fuA,B)f,CA
SUM VARIABLEOUT OFA FACTOR: zxf -
Letf(X,Y) be a factor, where Xis a =5f

variable & Y is a variable set.

Then, we can
"sum out"variable Xfrom f

=f5(c)*
Numerical example:

toproduce a new factor h =27, where

Excomixs**Y.II
e

eg



EXAMPLE2 EVIDENCECASE

eg

P(AIC =c) =0PCA)PCC=c/A) (Bayes' thm)

eg P(D) =,P(DIC) P(CIB, A)P(B)P(A) =P(A) IP(C =c(B) P(B(A)

=IPDI) ZP(B) ZP(C1B,A) PCA) =of,(A),c) fz(A,B
↓=If4x,(5fz(B)2,f,(A) =of,(A)4fy(B)fz (A, B)

↓ -
=Ify(,b)zfz(B)fj(B,) -
-

=

f5(A)↳
*

define f5, fo,f7 )-IfoC)
according tothe

=

f6(A)
-

=fq(D) brackets ALGORITHM (WITH
EVIDENCE)

ALGORITHM CNO EVIDENCE)
.Input:query var O, remaining wars Z,

.Input:Given query war a,

evidence vars E Cobserved to be

& F =setoffactors corresponding toCPTs

e), remaining wars z & setof

for ;0} Uz. factors involving CPTS for;QUE,

Fi

eg query:PLD) eg same example

elim. order:A, B, C ⑲AID
=d)

① replace fyCC, D) with fg(C) =fyCC,d)
steps:
-

① add f5(B,) =2fz(A,B,C)f,(A); ② proceed similar tobefore

remove f, (A), f3 (A, B,C)

② addfy(C) =zfz2B)fsB,c)
we don'tneed tosumoutto as we

removed it in Step 4

remove fzCB), f5(B,c)

③ add ff(C) =Ify2,D)fo(C)
remove fyCC,D), f6LC)

④The remaining factor fall) is our possibly

unnormalized) probabilityPCD)



ANALYSIS LEAST NEIGHBORS HEURISTIC

8.After eliminating Zj, the factors
- A, F, H, G, B, C, Eis good

remaining in set Irefer only to eq
↳ we eliminate the

W nodes with 2/
it,...., Zn

& 0.

- - neighbors first

2
Also, no factor mentions any

evidence
& ↳ leaving the nodes

variable E afterthe initial restriction. with 3 neighbors
....
Note

atthe end.

E
3 - if we started with

① The number of iterations is linear in

B, the ordering
the # of variables;&

would be bad since

② The complexity is exponential in
the

the size of the

#ofvariables. factors is larger.

POLYTREES .Idea: When choosing an ordering,
Polytrees are basically "trees"lie no

prioritize nodes with the leastnumber

undirected cycles) thatcan have
of neighbors.

multiple startnodes.
RELEVANCE

Idea:In these, the inference is linear
,motivation:Certain variables have

-

wrt the size ofthe network.
no impacton the query.

To do this, we eliminate only singly- eg A -> B -> C

connected nodes".
To calculate PCA), we only

need to look

eg atA's CPT!

- However, if we do var elimination, we

gettrivial factors (ie whose value is

just13

.Thus, when considering variables, we can

restrictour attention toonly the

"relevant"ones;

is given query
& & evidence E.

① O is relevant;

- eliminate D, A, C, X,,...,Xk ② If I is relevant, Parents (2) are

-if we eliminate B before relevant;a

these, we getfactors
that ③ If EEEis a descendentof a relevant

include all of A,C, X., ..., Xu! node, then E is relevant.

eg ① a
=P(F)

relevant:F, C, B, A

② a =PLFIE)

relevant:F, C, B, A,

E, D, G

③ O =P(F(E,c)

relevant:whole graph,
butreally none

exceptC, F since C

cuts off all influence

of others.



Chapter 7:
Causal Inference
CAUSALITY EXAMPLE:CAUSAL GRAPH
:"Causality"is the study of now

things influence each other & how

causes lead toeffects.

CAUSAL DEPENDENCE

,we say
"X causes Y"ifchanges to

W1 induce changes in Y.
...

Note jointdistributions captures correlationsEz
between X& Y, notcausations.

- P(YIX) ) Xcauses y observational:P(WGIS =true)
-

CAUSAL BAYESIAN
NETWORK

-factors:PLC), P(RIC), P(SI),

A "causal Bayesian network"is one where p(WalS, R)

all edges indicate directcausal effects. - evidence:S =true

- eliminate:C,R
eg malaria flu cold

- ↓x -rtional:P(WG/do(S=tre))
aches

we can remove the CPT from S

CAUSAL INFERENCE
since we "explicitly set"S = true.

"causal networks can solve "intervention queries"; - factors:P(C), P(RIC), P(WaIS, R)

is what the effect ofan action is.
- evidence:S =true

-but non-causal networks cannot.
- eliminate:C, R

OBSERVATION VS INTERVENTION INFERENCEWITH THEDO

"Observational queries"are in the form OPERATOR
-

"Whatis the likelihood ofy given "To do inference for P(X)do(Y=y), z =z):

x?"ie P(Y1X=x). ① Remove edges pointing to Y &

....

&"Interventional queries"are in the form P(Y/ Parents (y))2
-

"How does doing Xaffecty?" ② Perform variable elimination as usual

Levidence is Y =y,
z=z).

ie P(Y)do(X
=x)).

-

- the "do"keyword specifies the query
is an intervection.



COUNTER-FACTUAL ANALYSIS METHOD
"Counter-factual analysis"explores outcomes 8.For a causal model m. to find

thatdid not occur, butcould have occurred P(Y =y) e,do(X =x)):

under different conditions. ① Update Plu) to find Plule)

-basically a "what-if?"analysis (abduction);
.....

2
This can help testcausal relationships.& -u =noise variables

ey "would the patienthave died ifhe
② Replace the equations corresponding

was not treated
" to variables in setXby the

STRUCTURAL CAUSAL MODEL/SCM equations X =x(action);&

Idea:We wanttoseparate causal relations ③ Use the modified model to

calculate PCY=y).
from "noise".

...... EXAMPLE
& A "structural causal model"consists of
2

① X:endogenous/domain variables x =U,

② U:exogenous variables/noise y=xu +(1 -x)(1 -rz)X =V, 2

③ Only deterministic relations given by y =V2

equations in the form

Aparents(Xil, Wil
where U,corresponds tothe noise variable

associated with Xi.

29
U Uz

-noise variables

I ↓ model Bi

X, -Xz
-

domain variables -

evidence:X=true, Y:true

these correspond to

x
4 ,

↓ I
-

deterministic relations. =>P(Uz=1/evidence) =1.Oxy -Up y
y
z

Then

vz -
Y3 -> y =U2 =1.

model C:
-

x,
=f,(,), Xz

=fz)X,,Vz).

x
y evidence:X=true, Y= true

xy=fz(X2,Vz), Xy
=fy)X3,X2,Up) =>P(Uz =1/evidence) =1.

..... t
② We can convertsams tocausal Bayesian xx2 Then
3

networks, butnotver y
=xvz +(1 - x)(1 - Vz)

=0(1 +(1 - 0)(1 - 1)
uey

x, +x2
,

x, - X2 =0.

↓ I ↓
->

xz -Xy
x
3 *YY

Bayes net Vi W4

Sem
Then

Pax,) =2,P(u,)f
XI

P(X2IX,) =EP(V)fa
-.. x

2

isams are more descriptive since they4

separate causal relations from noise.



Chapter 8:
Reasoning Over Time
STATIC VS DYNAMIC INFERENCE -ORDER MARKON PROCESS

8.So far, we have assumed "static : Idea:The lasthe states are sufficient
inference"; is the world does not

for inference.
change.

....
⑦ However, we need to perform "dynamic ey-first-order:P(SSt-1. ...,so)

=P(S1)S+-,)
2

inference"in the real world since
So -> s, -> S2 +33 -...

the world evolves over time.

..... - second-order:P(SE/St-,...., so)
Es In particular, we need

① Asetofall possible states/worlds: =P(SelSt-,St-n)

② Asetoftime-slices/snapshots;
So +5, +32 -Syt ...

--③ Differentprobabilitydistributions for

each state ateach time-slice;& ! Advantage:we can specify the

④ Dynamics encoding how distributions entire process with finitely many time

slices.

change over time.

STOCHASTIC PROCESS eg for 1storder:St-, ->S7

A"stochastic process"is defined by - dynamics:4(se/St-1)
① a setofstates S,& -

prior:P(So)

② some stochastic dynamics P(S/St-,..., so).

eg
- Itton.MAROMODEaei

①
So -5, - 32-3 -> Sy - ...

->
② Uncertain dynamics increase state

-
uncertainty;but:This is a Bayes netwith Irov. per ③ Observations made from sensors

tme slice. reduce state uncertainty.
& .....
...

Problems: &2 A"Hidden Markov model"encapsulates
① We may

have infinite variables, this and includes

and so 0 a set ofstates siI

② We may have infinitely large ② a set of observations 0;
conditional probabilitytables. ③ a transition model P(St/St-, ..., so);To solve this, we will assume

④an observation model P. (Otst-1, ..., sul;

① "Stationary process":dynamics do not &
-

5change over time; 0 a prior PCSol.

is the CPT is the same regardless of
eg

1st order HMM:

the time step. So -5, -32 -

5 +S② "Massumption":currentstate depends ↓ ↓
01 03 04

only on a finite history ofpast
-PCS/St-1):State transition with

states.
uncertainty

- P(0,1st):uncertainty in measurements

from sensors



INFERENCE IN TEMPORAL HINDSIGHT

MODELS .Goal:we wanttocompute
,we have

Icommon tasks:

xt,...,0,7① "Monitoring".PCSE...., , I
-

-

idictorPitte!",et ,we can use "forward-backward algorithm"
to solve this:

④"mslikelyexplanation":argP(st,...,sola....,0,iplo). PCsilsi, Ploilsil, is th- 3,we can solve Q O
using variable I 2. RestrictO., ..., ot

elimination & with a variant So,..., Sk-I, Skt....., st

MONITORING

8.Idea:We wanttocompute MOST LIKELY EXPLANATION

It,..., 0,). Gal.We wanttocomputeI-
Plso,...,s10t,...,is the distribution of the currentstate I

given observations.
-

.....

⑦ We can solve this using the ,we can use the Viterbialgorithm
"forward algorithm", which corresponds tosolve this:

I
to variable elimination:

Fit
PCsol, Psilsif, Poilsil, ice

Episol,
Pasils, possic, vie I 2. Restricto,...., t

2. Restricto, ..., of toobservations made 3. "Maxout"so...., t

3. Sumout so...., St-,:ie -

COMPLEXITY OF TEMPORAL

INFERENCE
PREDICTION .HMMs are Bayes nets with a polytree

structure.
....

a

wewantto
compete

82 Thus, variable elimination is

I ① Linear wrt # of time slices,a
-

is the distribution over future state
② Linear art the largestCPT.

given observations.
.....

⑦ We can also use the forward algorithm:

Pisol,PCSilsial, Poilsic, instal2. Restricto,...., of toobservations madeI 3. Sumout So,..., Stth-I, Ott, ..., Otth
-



DYNAMIC BAYESIAN NETWORKS

Idea:Encode states & observations with

several random variables, and exploit

conditional independence to save time d

space.

:This allows us towrite the transition

and observation models very compactly.
NON-STATIONARY PROCESS

Ifthe process is notstationary, we

can add new state components until

dynamics are stationary.

NON-MARKOVIAN PROCESS

If the process is notMarkovian, we

can add new state components until

dynamics are Markovian.

:
2
However, note this may significantly
increase computational complexity.

-so we should find the smallest

state description thatis Markovian

& stationary.



Chapter 9:
Decision Tree Learning
INDUCTIVELEARNING DECISION TREES

"Idea:Given a training setofexamples A decision tree contains

of the form (x,f(x)), return a ①Nodes, labelled with attributes,

"hypothesis"function
n that ② Edges, labelled with attribute values;

&
approximates fo ③ Leaves, labelled with classes.

.....:Types: 8Idea:Classify an instance by starting
Aclassification;&

2

atthe root, testing the attribute

② Regression.
specified by the root, then moving

HYPOTHESIS SPACE
down the branch corresponding

to

The "hypothesis space"is the setof all
the value ofthe attribute;we continue

hypotheses a thatthe learner
this until we reach a leaf, then

may consider.
which we return the class.

REALIZABLE
eg

,we say
a learning problem is "realizable"

if the hypothesis space contains the

true function.

We can use a large hypothesis space, but

there is a tradeoff between the

expressiveness ofa hypothesis class &

:"We can express any boolean function⑤
the complexityoffinding

a simple, consistent

as a decision tree.

hypothesis within the space.
-butsome functions require

exponentially large trees



INDUCING A DECISION TREE
PERFORMANCEOFALEARNING

.Idea:We find a small tree consistentwith
ALGORITHM

the training examples by recursively choosing ,we can verifythe performance of a

the mostsignificantattribute as the root

learning algorithm by using a test

of the subtree. set, which are examples the algorithm
......

2 Algorithm: did notsee during training.E
-

OVERFITTING

,we say a hypothesis helt "overfits"

the training
dataifthere exists some

alternative hypothesis
h'EH such that

① h has smaller error than h' over

the training examples; but

② h' has smaller error than h over the

entire distribution ofinstances.

CHOOSING AN ATTRIBUTE

8.In particular, ateach iteration, we want

tochoose an attribute thatis most

useful for classifying examples.
....

Ideally, a good attribute is one that
Ez

splits the examples intoeither "all

positive"or "all negative".
⑤patrons?"is ... Overfitting can occur if

better here
① the datais noisy;

or

② the training setis too small togive

a representative sample of the target

For a training setwith p positive function.

examples & a negative examples, the To avoid overfitting, we can

"entropy" iS ① prune statistically irrelevantnodes,or

-

② stop growing tree when the testset

-i) =- plogultal-inlogel, indi
validation".

I performance decreases,using
"cross-

Then, ifan attribute Adivides the

training setE intosubsets E,..., Ev according

to their values for A, where A has v

distinctvalues, then the "remainder" ofA
-

is

I-
j

iwenttheiS

I
j We choose the attribute with the largest

IG.



CHOOSING TREE SIZE CROSS-VALIDATION

8.However, since we are now choosing the tree Idea:Repeatedly split the training

size based on the testset, itbecomes dataintotwo parts;one for training

partofthe training setwhen and one for validation, and then

optimizing the tree size. reportthe average validation

.....
⑧ accuracy.
2 So, we cannottrustthe testsetto

be representative offuture accuracy.

⑦ Solution:we splitthe datainto
.....

Atraining set:compute the decision tree; est② validation set:optimize hyperparameters

eg tree size

③ testset:measure performance ↳ then take the average of

i Choosing tree size based on the
the validation accuracy.

validation set:

...This ensures the validation accuracy is

representative offuture accuracy.
....

⑤ In "h-fold cross validation", we split

the training dataintoa equal size

subsets, and run he experiments, each

time validating on one subset& training

on the remaining subsets.

Then, we reportthe average
validation

accuracy of the b experiments.
i Selecting tree size via cross-validation:

I



Chapter 10:
Statistical Learning
.Idea:We have uncertain knowledge EXAMPLE:CANDY

aboutthe world, a learning reduces

this uncertainty.
In particular, we have our

①hypotheses H:our probabilistic theories

of the world;&

② dataD;our evidence aboutthe world. ->

BAYESIAN LEARNING "'s ypotheses
"Bayesian learning,consists of

-> us
3

①the prior
PCH)

Assume prior is

② the likelihood PCdIH),&

③ our evidence d =id . . . .,
dn3, P(H) =< 0.1, 0.2, 0.4, 0.2,0.K

and we wanttocompute Ifwe assume candies are
"iid":

x=kP1dIH)PCH P(d(h) =IP(dj(n)I
e Suppose first10 candies all taste lime:

via Bayes' theorem.
=>P(dIhg) =1=1.

.....

I
2
To predict an unknown quantity X, we

=>P(d(hz) =0.5" =0.0001
can use

=>P(d(h,) =0 =0

PXId,hilpchild --I =IP(X) hi) P(hild)
Posterior:

-

Prediction:
-



BAYESIAN LEARNING PROPERTIES MAXIMUM LIKELIHOOD /ML

,properties: Idea: Simplify MAP by assuming the priors
① Optimal:given prior, no other prediction is

are uniform (ie PChi)=P(hj) Fi.j), and

correctmore often than the Bayesian one

let
② No overfitting:all hypotheses weighted &

considered.
...

Butwhen the hypothesis space is large, itargmax pCd.
&
2 -

Bayesian learning may be intractable.
and make our prediction based on how

MAXIMUM APOSTERIORI/MAD only:
Idea:Make our prediction based on

the mostprobable hypothesis mapis IPX14m
EargmaxPchild) 2Properties:I ni- & Less accurate than Bayesian & MAP;

This "approximates"Bayesian learning. but ML, MAP & Bayesian predictions

eg candy example converge as dataincreases.

I lime: "map"hy, pClimel4map) =0.5 ② subjecttooverfitting.
...
⑤ hm is easier than finding

2 limes:"map"hy, P(lime(4mAp
=0.75

3 Finding
3 limes:"mAp=4s, PClimelhmap) =1 "MAP:

etc.

E However, the prediction from MAP is IntrgmaxI log PCdi
-

less accurate than the Bayesian
STATISTICAL LEARNING

prediction since it relies on only
Note,

one hypothesis 4mAp ①ifthe datais known, is all attributes

: Italso has "controlled overfitting"(prior are known, then learning is easy.

can be used topenalize complex ② ifthe datais unknown, then learning

hypotheses). is harder.

.....

⑤5 Also, finding "map may be an intractable EXAMPLE 1:CANDY 1

optimization problem!
- hypothesis 40:P(cherry) =0, pClime) =1 -0.

-datad:a cherries, a limes

- observed data

I
"MAP

=

argmax PchId) me hypothesis:O is relative free of

=argmax PCh) PIdh) ↳ o :e. 4(cherry) =e, P(lime)=se
=argmaxP(n) I PidiIh) Then

=argmax (logP(n) + logP(di(h) P(d(40) =
0c-al

-
=>log P(dIha) =cl0gO + llog(1-0)

=>aayahal- Fo
dO

Setthis
to0 to find optimal 0: => 0 =ce



EXAMPLE2:CANDY2 NAIVE BAYES MODEL

BN:or Etherry)=0 Idea:we wanttopredicta class-

⑭wr
C based on attributes Air

↓
Hypothesis:ha,a, 2 A, aAn
Data:- a cherries;Ic green wrappers, re Parameters:

2

red wrappers ① 0 =PCC
=true)

-

a limes;be green wrapper, re ② Oi
=P(Ai =true 1C=tre)

red
wrappers. ③ Di2 =P(Ai=true/C=false)

Then .....

x0,0,,021:pidl ho,0,02) =ac-ala,c-0,0,-02)? ⑬ sumption:His are independent given

C.

Getting (20,0,021, and setting maiolo, we get Note Naive Bayes models usually don't

o =cFe, 0= g., 02= perform as well as decision tree models

retge
since the latter does notassume

LAPLACE SMOOTHING

.Idea:Ifthere is no sample for a
conditional independence ofthe attributes.

: Parameter learning:
certain outcome, we may getoverfitting.

① Parameters: Or,paCV) =v
ey no cherries eaten so far

↳ Plcherry) =0 =E =

0

- Or,paC = v

=P(VIpaCV) =v)

↳this is dangerous since itrules out
- we can getthis from the CPTS

outcomes. ② Data d:

:To solve this, we employ "Laplace (add-one) -..,Untn,
smoothing",where we add one toall

③ Max likelihood:

eq pichemy =0 =c12 01. I
counts.

apa
-pacrl=parents of V



Chapter 11:
Neural Networks
ARTIFICIAL NEURAL NETWORKS LOGIC GATES

.Idea:Mimic the brain todo computation; Idea:We wanttodesign ANNs to

in particular: representboolean functions.

① Nodes correspond toneurons, d
① AND:
-

② Links correspond tosynapses (links).
S Wo a

=wo(l) +w,(X,) +W2X2.
- a [0
w,C hial =4, otherwise.UNIT x-> threshold
WL

For each unit i, ithas x- We can use wo=-1.5I

① Weights, w-refers
to the

W,
=

W2
=1.

strength ofthe link from unit i ② OR:
-

tounit j: ↳ We can use Wo=-0.5, W, =w2:1.

NOT:.TA,Xi+Wjo =W,X
③

↳ We can use wo=0, W, =-1.

② Activation function, h - corresponds to NETWORK STRUCTURES

the numerical signal produced:
:Types:
①Eeforwardnetwork:consists ofa

Alhaj). directed acyclic graph

- I should be non-linear eg

-Picture. "
↳

ins -outputs relayed

layer I layer 2· tonextlayer ↓ W

weights weights

Wi3
*
-I ↳ ② erentnetwork: consists ofa

-i

Exwji=ajhaj)= outj
directed cyclic graph.

& -can memorize information:Note the unitshould be "active"cie outputnear I3

when fed with the "right"inputs, and "inactive" PERCEPTRON

coutputnear 0) when fed with the A"perception"is a single layer

"Wrong"inputs. ...
feed-forward network.

COMMON ACTIVATION FUNCTIONS Ez Note a perception is a linear

separator.

MULTILAYER NETWORKS

Idea:Neural networks with Iifunction. hidden layer ofsufficiently many

O

sigmoid units can approximate any

.....

⑤ "Sigmoid"function: function arbitrarily closely.

:...
<see slides for ideal



WEIGHTTRAINING EXAMPLE

Our parameters are the weights <see annotated slides,

in the layers a wi W(2, ... .

Idea:We wanttominimize the errors.

To do this, we can use backpropagation.

LEAST SQUARED ERROR

g.Our loss/error function is

EitEnIw=? 11f(x;,w-yillI
we wanttominimize this.

To do this, we can use sequential gradient
descent:

Tt-nI
-
"To compute the gradientefficiently,Es

we can use backpropagation, or in

reality, automatic differentiation.

BACKPROPOGATION ALGORITHM

Firstphase: forward phase - compute

outputz;for each unit j.

·
x
2

-

zj =h(aj), aj =[Wj;zi

Second phase:"backward phase" - compute S;

wa,at each-is in

3=
- Then

Si
=Gh(g)(z; -yi) base casei j

is outputunit

I hsaj)*,8m (recursive case. j is hidden)

- Since
ag=zwiiti, thus =zi.



Chapter 12:
Deep Neural Networks
DEEP NEURAL NETWORKS VANISHING GRADIENTS

.A"deep neural network"is a Na j Idea:Deep NNS using sigmoid/hyperbolic units
-

with many hidden layers. often suffer from vanishing gradients.
.Advantage:high expressivity.

EXPRESSIVENESS

Idea: Although NNs with I layer ofsigmoid/

hyperbolic units can approximate arbitrarily

closely WNS with several layers, the

number ofunits may
decrease exponentially

.....

as the number oflayers increases.
8.This is because the derivatives ofthe

⑦2 Example:parityfunction
sigmoid & tank functions are 1.

only I hidden

layer:

2n-2 hidden

layers: xqy
=o(wzo(w,o(w,x)))

WS
xn,nz -> s

Then

E =0(az)0(a))
as products

24 of factors? I

3,
=0'(as) Ws o(a) ola,)

e4,
=0'xaz) W, wawwc,

Isetgo.Ien
-with more hidden layers, we need less

hidden nodes. sation: we use the "rectified linear unit'

activation function:

Tatmax(0, a).
e

-gradientis 0 or 1

- sparse computation
.....

Op "Soft"version/"softplus":

Zitlog(1+eI
-note this does notpreventgradient
vanishing (gradient <1)



OVERFITTING

Idea:As the number ofparameters is

often larger than the amountofdata,

it increases the risk of overfitting.

DROPOUT

This helps solve overfitting.

jo.Idea:Randomly "drop"some units from

the network when training.

Training:ateach iteration ofgradientdescent:

①each inputunitis dropped with

probability4,; &

② each hidden unitis dropped with

probability P2.

⑦... ediction:
① multiply each inputunitby 1-pii &

② multiply each hidden unit by 1-P2.

origmnotbe#1
b#2

out 0

i I ⑧ 0
-.W - WTW -- drop with -

X ⑧ X ⑧
- ⑧ X X

⑧

-I
prob P2 #- - -I- -x

0 X O 0 -drop with
⑧ ⑧ X ⑧

↓ prob P,

we drop inputnodes

randomly
-

Reaction: training
0

WW-TI
00

0

-> multiply by c-pc**!
-multiply by ctp,

'sAlgorithmi

I
: Intuitively, each dropoutiteration trains a different

sub-network, and we merge these during

training.



Chapter 13:
Decision Networks
MOTIVATION UTILITY FUNCTION

"sometimes, we need to make ,Autilityfunction"W.SEIRassociates a

decisions under uncertainty. "utility"with each outcome.

...In particular, UCS) measures our degree ofPREFERENCE ORDERING:3 &

.A"preference ordering"s is a

.....
preference for s.

⑰ Note U induces a "preference ordering"sranking ofall possible states of 3

affairs/worlds S. over 5 by sut <=UCS) = UCH.

- these could be outcomes ofactions. EXPECTED UTILITY:EU(d)
states in a search problem, etc .Idea:Under uncertainty, each decision & induces

⑤
....

In particular, we use the notation
2

a distribution Pa over possible outcomes.

① sIt =s is atleastas good as t

② sst => s is strictly preferred tot where Pals) is the probabilityofoutcome s

③ swt =>agentis indifferentbetweens & t under decision d

8.The "expected utility"ofdecision d is
where sat are states. 2

Ifan agent's actions are deterministic, Pa(sr(s)Ithen we know whatstates will occur.

-
.....

Op Otherwise, we can representthis using
PRINCIPLEOFMAXIMUM EXPECTED

lotteries:
UTILITY (MEU)

#....Passal .MEU states the optimal decision under

where state sioccurs
with probabilitypic conditions of uncertainty is the one

AXIOMS with the highestexpected utility.

Given 3 States A, B & C:

① either A S B, A SB or AB

Corderability),
② A > B, BY C

=A >C

<transitivity);
③ A >B>C =Ep S.t. [p, A; 1-p, 2]-B

(continuity);

④ An B =[P,A;1-p,c]-[p,
B;1-p.c]

<substitutability);
⑤ A < B =(p >, q

<=[p, A; 1 -p,B] >, [q,A;1-q,B))

(monotonicity)
⑥ [p, A; 1-p, [9, B;1-9,23]-[p,

A;(1-p(q,B;x1 -p)(1 -q).2]

<decomposibility)



DECISION NETWORKS / INFLUENCE POLICIES:S

DIAGRAMS A policy S is a setofmappings Six

"Decision networks"provide a way of one for each decision node Di, where

representing sequential decision problems. -MPar(Dill - Dom(Dil.I· Idea: -
① Representthe variables like in a BN: In particular, Siassociates a decision

② Add decision/controllable variables;a with each parentassignment
for Dis

③ Add utilityvariables thatdescribe A policy for BT could be

how good differentstates
are.

es

witsatt 8T(2,f) =bt

eg
- SBT(2, vf)

=

- bt

SiT(rc,f)
=bt

SBT(rc,rf)
=-bt

VALLE OFA POLICY:EUCS)

.The "value"ofpolicy is
the expected

utilitygiven thatdecisions are executed

CHANCENODES COA(
....,

according to8.

"Chance nodes"are random variables. . Essentially,
- denoted by circles -54(X,f(x))UCX,f(x))

Like a BN, they contain CPTs with I
-

probabilistic inference on their parents.
where 8(X) denotes the assignmentto

DECISION NODES ( A( decision variables dictated by 8 given

"Decision nodes"are variables setby the assignment X.

the decision maker.

- denoted by squares

⑦...In particular, the parents reflect

information available atthe time

the decision is tobe made.

es latest-

fever

-the values ofchills & fever

need tobe observed before

the decision totake the test

mustbe made

VALUEVODES ()
,"value nodesspecify utilityof

a state.

In denotedby
a

diamonddepende
on the states ofthe parents of

the value node.

ASSUMPTIONS
,we assume

I decision variables are totally ordereda

- is decisions are made in sequence

D...... Du

② "no-forgetting"property:any
information

thatis available when decision Di is made

is available when Djis
made, inj

- thus all parents ofDi are parents of Di

-

we use dashed lines to indicate this

- prttilafusfever -

.......



OPTIMAL POLICIES OPTIMIZING POLICIES:NOTES

,we say a policy S* is "optimal"if .Idea:Ifa decision node D has no

#MyEU(8) decisions thatfollow it, we can find

- itspolicy by instantiating each ofits

for all policies S.
parents and computing the expected

.....

⑦2 To compute the bestpolicy:
utilityofeach decision for each parent

①Startwith the lastdecision; instantiation.

② For each assignmenttoparents
& for

- no-forgetting -> all other decisions are

each decision value, compute the expected already instantiated.-

.....
value of choosing thatvalue ofDi ⑤
- 2

When a decision D is optimized, we can

③ Setthe policy choice for each value of
treatitas a random variable.

parents to be the value of D thathas

-justtreatthe policy as a new CPT

max value;

④Repeatthese steps for each decision in -given parent
instantiation x, D gets

S(x)

"reverse"order.
with probability (

⑦ Ateach iteration ofthe decision optimization....

3
To compute the expected values, we can

process, we can optimize Di by using
use variable elimination.

simple variable elimination calculations.

eq

- ey suppose we have asst <a,f, bt, poss to

Par(drug)
-we want EU (Drug =md/c,f, bt, pos

- in variable elimination, we can treatC, F,

BT, TR, Dr as evidence

- then eliminate remaining variables - in this

case, only Disease is left

- we are leftwith the factor
EU (md/c,f, bt,pos)= IP(Dis/, f, bt, pOS, md) U(Dis, bt,md)

jei Finally, we find which D maximises

EUCD/evidence), which will be in the

optimal policy.

OPTIMAL POLICIES FOR BUS

In BNs, utilitynodes are justfactors

thatcan be dealtwith using variable

elimination.

Thus, for this case, we can justuse

variable elimination.



Chapter 14:
Markov Decision 
Processes
SEQUENTIAL DECISION MAKING TRANSITION MODEL:P(SEISt-19--1
"Sequential decision making"combines static decision "Assumptions,

-

making leg in decision networks) & sequential ① Markov:P(SA)St-, 97-1, St-2, 9t-2, ...)
=P(SelSt-1,"_-1)

inference Leg HmMs, dynamic BNS( ② Stationary:P(S/S-,9t-1) is same given

CSE, 9t-1, St-1 Vt.

MARKOU DECISION PROCESSES

REWARD MODEL

8.Reward function:RCSA, as
Ire

.mption:the reward function is stationary

ie RCS, a1 is the same for a given

(s, a).
.....

E However, the terminal reward does not

3

have tobe stationary.

Idea:These are indefinite/infinite/large finite
eg +1/-1 for winning/losing

decision networks. .....

&Goal:maximize sum ofexpected rewards

....Formal definition:a Markov decision process has 4

IR(St,at
&

① States SES;

② actions at Ai DISCOUNTED REWARDS

③ rewards reR; :Idea:Ifhis infinite, then ERCS1,911 =N,

⑭transition model P(St) St-1,9t- 1)
which is notideal.

⑤reward model RCSt(a); .....

8 discountfactor 025=1; & ⑤

.....

⑦horizon (Hoftime steps) h.

· Tune
discounted rewardin

E find the optimal policy; I
3
Our goal is to -

ie an optimal way
toactatevery state

....
where 0121 is the discountfactor.

tomaximize the utility/reward. ⑦ Intuition,we prefer utilitysooner than

-

CURRENT ASSUMPTIONS later.

....

&Assumptions: POLICY
-

.....

① Process is stochastic: 8. The "policy"is the choice ofaction at

② Process is sequential; each time step.
.....

③ States are fully observable; &Formally, this maps states toactions

④ Model is complete · & 1=a+
-no learning is required -

⑤States & actions are discrete.

-note thatwe can cycle between andthetime"instates. I
-



POLICY OPTIMIZATION HORIZON EFFECT

To evaluate a policy, we can compute 8.Ifhis finite, the policy is non-stationary,

the value of following T: and there is no guarantee toconverge.

-best action differentat each time step

I :If his infinite, the policy is stationary,

and there is a guarantee for the value*e
- same bestaction ateach time step
iteration toconverge.

INFINITEHORIZON

Algorithms: To deal with a infinite horizon, we can

use

①Value iteration
① a large enough n and execute the

② Policy iteration
policy atthe

nth iteration;or

⑤..",computation can be done

⑦ continue iterating until IVn-Vn-ilE.

① "offline":before the process starts

- I is
the "threshold"

② "online":as the process
evolves.

VALUE ITERATION POLICY ITERATION

.Idea:we find the max values iteratively .Idea:We alternate between 2 steps:

at the 5th time step:

apalationgiveis,ase
-Maxispes', alvesin -I ② Policy improvement:
-
....
In particular, 1FegmaxRCS, a) +WIPIs'Is,a) VTCs' Is

&2

IMi1s,a)+WI PCsIIS, al VIs .Algorithms

a

-

Algorithm:

, we can representvalue iteration in

a matrixform: COMPLEXITY

-I
ivalue iteration:

I ①Each iteration:OCISPIAK

I * Res ISI ② Many iterations;linear convergence

Policy iteration:
-

① Each iteration:OCISPAISPAI

② Few iterations;linear-quadratic convergence



Chapter 15:
Reinforcement Learning 
PROBLEM MODEL FREE EVALUATION

,Idea:Given a policy it, estimate vT(s)

withoutany transition or reward model.

.....
&Strategies:2

thatmaximize rewards.
·min,sil approximation

,we wantto learn tochoose actions I Ex

->
several sample

.....

Ez We have states, actions & rewards, but

~one
do notknow

the transition or reward a

differenceevents results sample

....

models. I =r +2vT(s)
approximation

⑬

Wewartine
-

i t =0

-

Idea:We want to learn the model.

COMPONENTS
:RL agents may

include

① the model PCs's,a), RCS,al;

② the policy
TCS);&

MONTE CARLO EVALUATION
③ the value function

VIsI.

utcans-serie
-

:Incremental update:

Attis+ inCan-V*CsII. On= ntsI
-



TEMPORAL DIFFERENCE
EVALUATION BELLMAN'S EQUATION

" Let a*Cs, a) be the optimal
a

awatercrtwu,s -vi function;in the optimal state action

- value function.

8.Ifin is decreased appropriately with the

Then 0*Cs,a) satisfies the following

# oftimes
a state is visited, then

Bellman equations

Vt(s) converges
tothe correctvalue.

EErls,a]+5PIs'Is,al max asi,sufficientconditions for OnCs): I
e

where vY(s) =maxa*(s,a),nose resi **(s) =argmax &YCs,a).
a

&-LEARNING
.....

⑦5Algorithm: .Idea: Rather than optimizing the state

I

value function VTCs), we optimize
the

O-function &CS, a).

COMPARISON

Monte Carlo

:Callenge:How do we choose ourasemateane actI -needs many
ectories

on a?

- needs less

trajectories tray
-
MODEL-FREE CONTROL

: Idea:Instead ofevaluating the state

value function VTCs), evaluate the

"State - action value function"aTCs,a)

=E(rIs,a) +WPCs'Is,a) VTcs')I-
-value ofexecuting a followed by

T

"Then, we use the policy

Eitargmaxat is,alI-



EXPLORATION US EXPLOITATION

.Idea:Ifthe agentalways chooses the

action with the highestvalue, itis

"exploiting", and the learned model is

notaccurate.
.....
⑦2 By taking random actions ("exploration"). the

agentmay learn the model, butparts

of itwill never be used.

....

⑦ Thus, we need a balance.

COMMON EXPLORATION METHODS

"methods:
① Egeedy:with prob a, execute random

action;otherwise, execute the best

action a* =argmax &Cs, al
a

②Inexploration:increasing temp T

increases stochasticity

Kate
CONVERGENCEOFO-LEARNING

&-learning converges tooptimal
d-values if

① every state is visited infinitely often;

⑧ the action selection becomes greedy
as t -> N;&

③ the learning rate is decreased fast

enough, butnottoo fast:

CraI
-

n-
eq do 3-greedy, butdecrease a over time



Chapter 16:
Deep Reinforcement 
Learning
LARGE STATESPACES GRADIENT O-LEARNING

,Idea: For large state spaces. O-learning Idea:We wanttominimize the squared
is impractical since the update function error between

has
complexityproportional to the state ① the d-value estimate:Owls,al

space size. ② the target: X maxQals',all
....
⑤ We need to approximate isquared errori

①the policy TCs) -> a i
2

② the O-function CCS,al -> 1R;& -Eamls,al--- wmx ars'all
③ the value function VIS) -> IR.

O-FUNCTION APPROXIMATION Eitjams,al-r-2max dals,all the"uts= (x, , . . ., Xn)T I① Linear: -

· waira natureit

,we can then use gradient
descent

-

Atg(X;w)

CONVERGENCE OF APPROXIMATION

&-LEARNING
:Given Z =0, Z2<

a:

D linear approximation
oflearning converges,

but

② Non-linear approximation o learning may

diverge.
- adjusting w toincrease a atCS,al may

introduce errors atnearby state - action pairs.



MITIGATING DIVERGENCE

"To mitigate divergence, we can use

0Experience replay,
a

② Using 2 networks:

- O-network; &

-targetnetwork.

EXPERIENCEREPLAY

Idea:store previous experiences es,a,s',r>

into a buffer a sample a mini-batch

of previous experiences at each step

to learn by G-learning.

2 Advantages:
① break correlations between successive

updates (more stable learning

② less interactions with environmentneeded

(better dataefficiency)

TARGET NETWORK

8.Idea:Use a separate targetnetwork

which is only updated periodically.

- similar to value iteration.

Advantage:mitigate divergence.

DEEP O-NETWORK / DON

A"deep &network"uses gradient

O-learning with

① deep neural networks,

② experience replay;
a

③ targetnetwork.



Chapter 17:
Model-Based 
Reinforcement Learning
MODEL-FREEVS MODEL-BASED RL COMPLEX MODELS
In afree online RL, there are Idea:Use function approximations for

no explicittransition or reward
the transition & reward models:

models,and simply justassociate
values

①Linear model:
with state-action pairs.

(5,0)=N(s'lwTx,wz)

② Non-linear model:

- Stochastic:Gaussian process;

" In mebased online RL, we learn an I,i=aP(s(mc.),k),)
-

explicittransition and/or reward model.
- deterministic:neural networks

I(a) =NN(s,a)(
-

PARTIAL PLANNING

8.Idea:In complexmodels, fully

optimizing the policy/value function at

:Befit:Increased sample efficiency each time step is intractable.

EDawback:Increased complexity.

....

To mitigate this, we can do partial

planning thatinvolves

MODEL-BASED RL METHOD
① a few steps of a-learning: &

.Idea:Ateach step: ② learning from simulated experience.

① Execute actions

② Observe resultantstate & rewards MODEL-BASED RL WITH O-

③ Update transition/reward models LEARNING

⑦Update policy/value function.

Algorithm with value iteration:

1similar to 0-learning



PARTIAL PLANNING US

REPLAY BUFFER

Idea:In model-free e-learning with a

replay buffer, we update the d-function

based on samples from the replay

buffer;
in the previous algorithm, we update

a by generating samples from the

model.

Rebuffer:
①Simple;

② real samples;but

③ no generalization toother state - action

pairs.
.....
&
3
Partial planning with model:
-

① complexi
② simulated samples;but

③) generalization toother state action

pairs.

DYNA - R

Idea:We learn an explicittransition d

reward model & learn directly from

real experience.

- outer loop:similar to model-based

: innerloop:
similar to modelfree



PLANNING FROM CURRENT STATE:

MONTE CARLO TREE SEARCH /MCTS
Algorithms

8"maTs"is a heuristic search algorithm

used for various decision processes.

:"Idea:instead ofplanning atarbitrary
2

states, plan from the currentstate, which

helps improve the nextaction.

.....

&3 steps:we repeatthe following:
-

① "Selection":starting from the root,

-

selectsuccessive child nodes until a

leaf is reached.

-root:currentgame
state

-leaf:unexpanded
node sie no simulation

has been performed yet

0 "Expansion":unless
the leaf ends decisively,

2
- the
I child nodes and choose

create

frombestmode
these.

-child node:any
valid action from

leaf node

③ "Simulation":complete one
random playout

-

C:ie
choose actions until the

from

game is
decisive".

0 Backpropagation:use
the resultof

the

-
4

playoutto
update information in the nodes

on the path from
the rootto

the

leaf.

To make this tractable:

① Approximate leafvalues with value of
-

defaultpolicy;

ata*(s,al =ns,as I,uI
-

② Approximate chance nodes' expectation by
-

sampling from transition model:

(=R1s,a) +2 IV(s')I S'
-

③

Fordonnodes, only expand the most

atax
acs,as+a"I VY(s) =mexa*Is, a*)



Chapter 18:
Multi-Armed Bandits
STOCHASTIC BANDITS THEORETICAL GUARANTEES

8.If I is constant, then for large enough t:
...
A "bandit"has

I

⑤
I =:I① a single state is];

I =Id =0(n).

② a setofactions/arms
A; Lossn

t =1-
③ space ofrewards (often rescaled to

"If 215I, then for large enough t:&
[0, 1]);

④finite/infinite horizons,&

⑤ average
reward setting

( = 1)
a=aeoct)

There is no transition function to I Lossn= E, Icollogal
be learned since

there is a single -
state. EMPIRICAL MEAN

We only need to learn the stochastic 8.Idea:We wanttoquantifythe empirical

reward function. mean RCa) from the true mean RCa).

EXAMPLE:AD PLACEMENT

IfagiteIdea: I IR(a) - R(a)) < bound

① Arms:setof possible ads

② Rewards:0 (no click), 1 (alichl
then we can selectthe arm with the best

" Whatorder should ads be presented RCa)+bound, since R(a)-RCa) + bound.
2

tomaximize
revenue?

POSITIVISM IN THEFACEOF

-exploration
is exploitation problem

UNCERTAINTY
E-GREEDY
Idea: Select an arm at random with prob ,suppose there exists an oracle thatreturns an

2, and otherwise do a "greedy"selection upper bound UBucal on Real for each

Lie select arm with the highestaverage arm a based on a trials.

so far). : Suppose further

REGRET T=R(a).lim

n-aLetRial be the true (unknown) I-
.....expected reward of a,and let

⑦ Optimistic algorithmsat
each step, select

I
.....

I aannamedin MUBn(a)
-

&4 This algorithm will converge to al

Prof. Suppose
we converge

to suboptimal arm

at=r*- RCal.7 a after infinitely many
trials.

-
..... Then

⑤ The "expected
cumulative regret"for m

R(a) =UBg(a)UBg(a)
=Rla') Val.

time steps is

ButRCa)>RCa' Fa' contradicts our

losscan.II assumption thata is suboptimal.

-



PROBABILISTIC UPPER BOUND BAYESIAN LEARNING

.Idea:We cannotcompute an 8,Letto be a random variable for as

upper
bound with certainty as we

rewards.

are sampling.
....

& But, we can obtain measures -that "Ideaxpress uncertainty about8 by a prior
2

are upper bounds mostof the timesis

P(O) i &

② Compute posterior
PLOI r,..... I based

Allfall 1-8. on samples r,...,
and observed so far.

'sBy Bayes' Theorem, we have

·asiti
↳

.O papers, .... asI DISTRIBUTIONAL INFO

where na:# of trials for arm a ,we can estimate

UPPER CONFIDENCEBOUND /UCB ① the distribution over the nextrewards

Tik...,
r = 1PCr+:0) Pla1r,,..., in deI

② the distribution over RCa) when a includes

the mean:

all..., r =PCO r,......

I if 0 =R(a).

-

BETA DISTRIBUTION:Betald,Bl
8.The "Beta distribution"has the property that

ifPrCO) - Betald, BI, then

- we choose Sn=tyin Hoeffding's Noor-a--
bound -

UCBCONVERGENCE THOMPSON SAMPLING

& UCB converges as n+N. Idea:....
why?

① Sample several potential average
rewards

u -aninsenses.
We

intere -tried 1 R,Cal, ..., Rula) -Pr(RIa)lr,,..., r) Va-
often

:In particular,
② Estimate the empirical average

↳OClogn) Att.,Rica
-

-
③ Then we can find

attrgmax(a).I
:Algorithm:



SAMPLE SIZE

.Idea:In Thompson sampling, the amount

ofdata n d sample size he

..... egulatetheamount ofexplorativein82
~
Ca) becomes less stochastic.
R

.....

Es This ensures all actions are chosen

with some probability.

ANALYSIS

: Thompsonsampling
converges tothe

:Theoretical Loss & Oclogn).



Chapter 19:
Game Theory
MULTI-AGENT DECISION MAILING LEARNING
Idea:In practice, there is usually "Idea:Each agent

decides to act

more than one agent. based on

.Thus, each agent
needs toaccount

⑧the world;

for other agents' actions/behaviors. ② other agents;&

GAME ③ their utility function.

A "game"is any setofcircumstances
TYPES OFGAMES

whose outcomes depend on actions of
"Types:

two or more rational self-interested
①etive - agents have a common

players. goal

PLAYERS ② Competitive - agents have a conflicting

"Players"are agents within the game goal

thatobserve state & take actions. ③ mixed - mix ofboth

NORMAL FORM GAMES
RATIONAL

A normal form game"consists of

,we say an agentis
"rational"if

①a setofagents I
= 1, . . ., N,

N2,2;

they choose their bestactions, unless

② a setofactions for each agent

they are exploring. Ai =c,a!, ..., a, 3;
SELF-INTERESTED ③ outcome of game is defined by a

" We say
an agentis "self-interested" profile a

=

Ca, , . . . ,an);

if they only care abouttheir own ④total space ofjointactions
is

benefits. at A, x ... xAn;
&

GAMETHEORY ③ the utilityfunctions are ui:A ->R.

: "Game theory"is a mathematical model
PAYOFF MATRICES

ofstrategic interactions amongst?) agents
8.Idea:We can representnormal form

in a game.
games using "payoffmatrices".

INTERACTIONS actions
ent 2

An "interaction"occurs when one agent
->

ag
takes

directly affects other agent(s).
.....

8 Thus, the utility for one agentdepends

on other agents.
STRATEGIC

↓
"We say agents are "strategic"ifthey actions ↓I

maximize their utilityby taking
into account agent I utility of utility oftakes agentI ent

their influence on the game
via their

from joint ag2
actions

from joint
actions.

actions



PLAYING A NORMAL-FORM GAME NASH EQUILIBRIUM/NE
.Idea:Players choose their actions ,we say o is a "Nash equilibrium"

atthe same time. iff each agent i's strategy of
-

- no communication with other agents couse to the other
is a bestresp

- no observation of other players' actions
..... agentstrategies _ i
&
:
Each player chooses a strategy ofwhich

... Alternatively,o⑤ is a NE if no

can be either:

agenthas any
incentive todeviate

① "Myed"- probabilistic distribution over

from their currentstrategy wi.

actions

② "Dure"- one action is always chosen SOLVING FOR NASH EQUILIBRIA

,method 1:Follow the chain of best

-STRATEGY PROFILE
responses until we reach a stable

.The "strategy profile"is the solution
point,is

to a normal form game
which outlines

① If some player is notplaying a

the strategy each agentplays. bestresponse, switch to another

...

We use "o,"to denote the strategy strategy thatis the bestresponse.
Oc

- ② Repeat this until all players
are

....

ofplayer i.

playing the bestresponse.
& We use ,to denote the strategy
3 "method 2: Fix a strategy for one

2 -

...

of all players exceptin

player & find
the bestresponse for

⑳ We use "dilo)"to denote the utility
4

the other.

ofagent;under strategy profile o
PARETO DOMINANCE

DOMINANT [STRATEGY] ,we say an outcome a "Pareto dominates"

f,we say for playeri, a strategy of another outcome o' if
-

-"dominates"strategy ofif
4.Co) >UiCo'l Vi

-

it, excel all to al I E:s.t. Uico) > u;Co's.

I -S.t. 4, 10;, 0_i) 4;Cw!, _i
-

70

- PARETO OPTIMALITY

isastrategy is "dominantifit
dominates

An outcome is
"Pareto optimal

all other strategies. iftno other outcome o'Pareto

DOMINANT STRATEGY EQUILIBRIUM/ dominates o;

DSE MIXED STRATEGY NE

, we say the strategy profile o is a "DSE" We say a mixed strategy or is a

NE if

ifeach player has a dominantstrategy.

!]ETuila; wil] Fri AriIfa game has atleastone DSE, then

we say
itis "dominance solvable". for each agent i.

BEST RESPONSE NASH THEOREM

,given a strategy profile;vi, wi, wi is Every finite game
has at leastone

a bestresponse to the current) other agents'
(mixed) strategy

thatis a
Nash

strategies o.:Iff equilibrium.

-I u;zwi, 0_i), 4,Co;,
il Vo;oi

-

Note a
rational agentwill always play

a bestresponse.



Chapter 20:
Multi-Agent 
Reinforcement Learning
FRAMEWORK

OPTIMAL POLICY

8.In MARL, the optimal policy should

correspond to some equilibrium of

the stochastic game.
....

E Themost commonpatiocome
t

We can define a
"value function"

STOCHASTIC GAMES AitEIr;/sr =s,I
"Stochastic games"are N-agentMDPs. -

2components: . Then, we say
the stochastic game

has a "Nash equilibrium"T
①N:# ofagents

iff
-

② S:shared state space

i-③ As:action space ofagentj, jF...,

I +
es

v
④ RY:reward function for agentj. P(rS/s, a, ..., as

-

(ππ,; I

-

S5T:transition function, PLs'Is, a', ..., as ππ

⑥ C:discountfactor, 02821

⑦h:horizon (# oftime steps) INDEPENDENT LEARNING:

: Gal:find an optimal policy
T*

=9TY,..., T*3 NAIVE APPROACH

where ,Idea:Apply the single agent

For O-learning directly to each agent.

Limitations:
2 -I ①Mightnot

work well against
- opponents playing complex

and ii:S -> bCA") lie probability
strategies;

distribution over Ai).
② No guarantee of convergence;

&

, to play a stochastic game, players choose

③ Non-stationary transition &

without
their actions atthe same time,

reward models.

communication or observation ofother player's

actions.

....
Ateach state, all agents face a "stage

05
with the d

game" (normal form gamel

values ofthe currentstate
& jointaction

ofeach player being their utility.



COOPERATIVE SGS LEARNING IN COOPERATIVE

"cooperative sas"are those STOCHASTIC GAMES:
where the same reward function is

JOINT & LEARNING / JOL
shared across all agents.

OPTIMAL POLICY *di:d-value for agent i

:In this case,
the equilibrium in the

case ofcooperative stochastic games

is the Pareto dominating equilibrium.

OPPONENT MODELLING

Idea:Each agent
should maintain a

belief over other agents' actions at

the currentstate, as this is required
- => =

to formulate its response.
.....

⑦ The method in which an agent
.....

accomplishes this is called "opponent ⑤ Idea: Modify & learning to include
-

modelling" the opponents' action in the

FICTITIOUS PLAY &-updates.
.....Idea: Each agent

assumes thatall

Oz In particular, we wantto find the

opponents are playing a stationary
mixed

"Nash & function"for the game:

.....

strategy. strs,al+2I PIs's,alvics', I...,13)&2 Mod: I S'ES

① Agents maintain a countofthe # of-
times another agentperforms

an action;it .This conveys the agent's immediate

- reward & discounted future rewards

I nj(s,aj) = 1 +n,(s,aj) Xj,l
when all agents follow the Nash

-
② Then, they update

their "belief"aboutthis equilibrium policy.

strategy ateach state according to

CONVERGENCEOFJOL

.For a finite game, ifall agents

-avi learn using the same algorithm
sie

I ·

"self-play"), then fictitious play

-
converges to the true response of

coments.
③ The agents can then calculate the best

the op
....

responses according to this belief.
82 In particular,

JQL converges
to the

Nash O-values if

① each state is visited infinitely

often;&

O the learning rate a satisfies
2

--I 20 =0, 0.
M-

: Note the Nash O-values are

3

unique.



COMMON EXPLORATION METHODS OPPONENT MODELLING
:Methods: ,challenges:

① s-greedy ① Other agents could use

② Boltzmann exploration
3 amegleident differentalgorithms

case ② Computing the min-maxaction

COMPETITIVESGS
can be time-consuming

:"Competitive Sas"are those where the

Arnative:use fictitious play

reward function is zero-sum;ie

:In particular,
this also converges

17t0. in competitive zero-sum games.

-
CONVERGENCEIN mm

OPTIMAL POLICY
&-LEARNING

:The equilibrium in
these cases is

.In particular,
mm a-learning

the "min-max NE".

In particular,
the optimal value function converges

to the min-max

equilibrium if
is

Mixmin[ri,a",as + VPrIs's,, svisi
① each state is visited infinitely

often;&I
② the learning rate a satisfies

INGIN COMPETITIVESUS: --I 20 =0, 0.
M

MIN-MAX O-LEARNING -

·ninupdate"invisiais,a,aj) =(1 -) acs,a,a
-is

I vics) =max min aics, a",a
-



GENERAL-SUM STOCHASTIC CONVERGENCEOF NASH

GAME OL

:In "general-sum SGs", the rewards :Nash O-learning converges to the

of all agents can be related NE if

arbitrarily. ① every
state is visited infinitely

often;
OPTIMAL POLICY

② the learning rate a satisfies

"Idea:We wantto find the NE/

attodi

Nash & function of the game. I-
LEARNING IN GENERAL-SUM SGS:

③ the NE can be considered as

NASH O-LEARNING a global optimum or saddle point

"mption:Self-play. in each stage ofthe
stochastic

8mthod: game.

① Utilities of the game are the - guarantees unique convergence

O-values for each agent; point
-butrare to hold in

② Each agentupdates
their d-values

practice.
using

-

ita's,a", ais+rer"+rwasnfaicsi)I NashTaCs']:=T's. TCs'. .... (s'). ais')
↳ut

OPPONENT MODELLING

Solutions:
0 Agents can take equilibrium action if

unique
-butnon-unique equilibria in practice

-equilibrium computations
can take a long

time

-

convergeneorunder
strong assumptions

② Fictitious play

-convergence only under strong
assumptions

cunique equilibrium)
③ Assume every agentis doing independent

learning

- no convergence guarantees


