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Chapter 1:
Fundamentals of Set Theory

*note:¥sm:::m:÷aYa

THE SIX FUNDAMENTAL AXIOMS

EXISTENCE + EXTENSIONALITY PAIR
,
UNION & THE POWER

SET

' ÷
We need to define other axioms

to give
us

EXISTENCE
sets other than

0 - ( The first 3 only
tell us ¢ exists ! )

:

The Axiom of Existence
States that

there exists a set with
no elements ;

PAIR
for this set A , A satisfies A EX

-
.

The Axiom of Pair States that , given any
sets

* again , c is a

for all
sets X -

l

A & B ,
there exists

a
set C whose elements set of sets !

are exactly A and B ;

EXTENSIONALITY
ie f X : (X-- A V X--B) ⇒

XEC -

"

The Axiom of Extensionally

States that if
two sets

have the

We can
also show

C is unique, using
the AoExt .

Same elements , they
are equals

Denote IA ,
B} as the set containing A & B ,

ie if every
element in

X is in Y and v.v,

and the
shorthand IA } for the

set 4 A. A} .
X -- Y .

THE UNIQUENESS
OF ¢

In combination
with the previous

3 axioms
,
we

"

These first 2 axioms can
be used

can create
2 new sets :

to prove
the empty set , 0,

is unique .

① Let A -- 13=0. Then , the
Aop tells us

Proof . By
Ao Exi , 0

exists , so we only

40, 0 } ,

or 40 } , exists .

need prove
its uniqueness

.

13=40} . Applying Aop once again .
Now , suppose

7- Xi , Xz such that X1 & K
② Now ,

let A- 0 &

have no elements '
we can also deduce 4/0 , I¢ } } exists -

Then , every
element of X , is

in Xz and V-V,

since they
both do not

have any
elements .

UNION
:-X,

= Xz by
AoExt , and

we are
done .

'

The Axiom of Union States that , for any set
S
,

there exists
a set U such that , for any

set X ,

COMPREHENSION
XEU if and only if

XEA for some
set AES ;

'

The Axiom Schema of Comprehension
States that

set X CPCX) is a

if pcx) is a property of
a ie

FS : IV a [ FX : XEV ⇐ XEA ,
Aes ) .

statement ) , then for any
set A ,

there exists

XEB if and only if
XEA ,

Again, using
the Ao Ext , we can show S is unique .

a set B such that

& VX PCX) is true : union of elements in Ss

Denote US to represent
the

and AVB as shorthand for VIA ,
B } .

ie

F PCX) ,
A :
I B = di XE A

: PCX)} .

"

We can use the Aop to create larger
sets from

* note : A , B
one sets
of

!

Smaller ones .
* Aoc is referred to

as a

"schema
" as it actually

is a large
collection of axioms

( I for every
possible PCX

) . )

POWER SET
'

Furthermore ,
we can

show
this set B is unique

.

'

'

The Axiom of
Power set States for any set

A ,

Proof . The
Aoc shows

B exists , so we
need

such that for any set
X '

*
p can also be written

there exists a
set P

only prove
it is unique

.

as P .

X EP if and only
if
XE Ai

Suppose
7- B, , Bz

such that

B
,
-_ IXEA : PCX)}

and Bz
-

- IX c- A : RX)} for some
A. PCXI .

FA : IP a [ FX : Xe Pei
X EA ]

.

ie

clearly , if
XEB, ,

XEBZ also ,
and VV

-

-

We can
also show PCX) is unique from the preceding axioms .

By the
AoExt ,

this implies
131--132. *

Denote PCA)
as the power

set of A -

* note :
-

'

j Examples
:

both ¢ & A are always

elements of PCA) .

① PCO)
= 0

② Puig})
-

- Id ,
IO} }

③ pcix, ,xz})
= 40, ich} . Exit . Ixnxz}} .



[

OTHER SET CONSTRUCTIONS
SET DIFFERENCE

INTERSECTION
-

'

Similarly , we
can define

AIB by

'
'

- we do not need any
axioms

to

letting
PCX)

=

"

X #B
' '

in
the

Aoc ,

"

describe the
intersection of

two sets .

resulting
in

Given two sets A & B ,
we use

the Aoc ,

AIB
= I XEA I

XEIB} .

with PCX) =
' '

XEB
"

.

We then define
the

output set
as the

intersection
between

A & B i

An B
= I XEA

: XEB} .
ie

CONSTRUCTION OF N
METHOD OF ORDERING

IN

we can
use the

sets we have defined INDUCTIVE SETS
"
- Let m ,

new .

We say
men

number (and
zero) to a

-
:

A set I
is inductive if

to assign
each natural

( ie m is less
than

n) if men
.

① O C- I ; and

set .
* note : this

is an
'' order relation

"

on a set .

② If NEI ,
then Scn) = ntl C- I .

"

In particular , we would like new
to correspond

to a
set with n

elements .

THE AXIOM OF INFINITY

The Axiom of Infinity
slates that

ZERO
an

inductive set exists
.

' "
since 0 is the only set

with no

elements , we therefore
conclude that

'

We can then define N using AOI d Aoc,

0=01- resulting in

N = iixe I : x c- I VI }
,

ONE
' "

. Although
there are many sets with one

where I is the
inductive set defined by AOI ,

element , we define
1 as the

set to} ;

and I is an
inductive set

-

ie

, = go} -- 4013 .

"

We can also show N is unique from the AoExt .

THE SUCCESSOR, &
DEFINING -

Next , we can
show N is inductive

'

Proof . Since OEI ,
where
I is an

inductive set,

SUCCESSIVE ELEMENTS

OE N also ,
based on

its definition
.

"

,

"

The
' '

successor
"

of any set
x is defined

to be x V Ipc} -

Then
,
suppose

ne N . By deft ,
this means

NEI for
all inductive

sets I -
For each

I
,

'

We can use
this to define a

method to

obtain the next natural number
;

(htt) must
also be

it ( by defa
) .

given any
new ,

we define
Hence anti

) C- N
also .

This is enough
to prove

the claim . #
htt = n U In } .

CARTESIAN PRODUCTS
ORDERED PAIRS

' "
-

Given any
two sets X & Y , we

'

Given any
two sets X & Y,

define Xx Y to be

we define the
ordered pair

( KY)

Xx Y = I we IPCIPCXUY ))
: w

-

- (x. y) ,

KEX , ye't . }
to be ex, y) = 44×3, IX.Y} }

Xxy = I w -_ ( x. y) C- Z
: KEX , yet} .

But we need

We can use the AoExt to
show

Proof . we know

that CX ,y) is unique;
ie if

to find a set Z that contains Cxcy ) !

×=x
'

& y-- Y
'

,
then

first, ( x. y)
= KIX} , IX. 93} -

,

and vice versa .

( x. Y ) = ( x : Y
' ) .

observe 4×3 , ix.y} E ( xuy) ; so Ix} . IX.y} t (NY) .

Proof. Case 1 : XIY.

Similarly ,
'

gin} , Ix, y} } EIPCXVY) ;
hence,

Then
,
(x. Y) = IIXix}} -

- Ix} .

Cxcy) E PCIPCXUY ))
ViceX. yet .

Similarly . Cx
'

,
y
'

) = IX
'

} = Ex}. (proved) .

So
,
our set 2- = IPCIPCXUY) ) .

Case 2 : XIY .

Then
, IX.y}

-

- Ix
'

, y
' } , as ix.yes * Ex

' } .

Hence
, 4×3 = Ix

' } , so X=X
!

So Ix' , y
' } .
- ix.y

' } = ix.Y} ; : - Y
'

- Y
'

.

( proved ) .

'

We can use this definition of an
ordered

pair to create ordered n-tuples for any
n :

(X
, ,Xz

-
- Xn )

= ((x , ,xz . - xn -, ) ,
Xn) .

(where a
l -tuple is simply

the set Ix,} . )



Chapter 2:
Relations & Functions
RELATIONS FUNCTIONS

'

A function f
is a relation such that

'

Given two sets X & Y ' then bfbz '

a binary relation from X to Y if Ca, b , ) ,
Ca
, bz)

E f ,

ie for any first coordinate in f , there is only

is a subset of Xxy .

'

More generally ,
a set R is called one ordered pair with that first coordinate

.

a relation if all
the elements of R -z for any

two sets A & B
,
f is a function from A to B

if each AEA is related to exactly one element be B .

are ordered pairs .

=

We use the notation f : A→ B to represent
this .

TERMINOLOGY ( I- t)
INFECTIVITY OF f

DOMAIN OF R
.

a function f
is injective

( ie t - t) it

binary relation 12
,
or dom (R)

,

Vic
,
.kz C- domcf) , K

,
# Kz : fcx,> I fcxz

) .
' ÷ The domain of a

is the set of all x for which Ge,g) ER ,
=

( ONTO)for some y - SURJECTIVITY OF f

RANGE OF R - "

A function f
is surjective Cie onto) if

-

The range of a binary relation R
,
or rank) '

v. be B, Iaea
a flat -- bi

ran Cf ) = B ; ie
,

is the set of all ¥
for which Gc,y)

ER
,

BIJECTIVITY OF f CI-I & ONTO)
for some x .

'

A function f is bijective
it is both injective &

FIELD OF R

relation R
,
or field (R) ,

is

'

The field of a binary surjective .

defined to be

INVERTIBILITY OF f-
field (Rf

dom ( R) U ran CR) .

UNDER R '

A function f
is invertible if f-

'

exists .

IMAGE OF A SET

'

The image of a
set A under a binary relation R

'

'

We can prove f
is injective if and only if

is the set

f is invertible .

RCA) = I be ran (R) : Ca, b) ER ,
a C- A }

.

INVERSE IMAGE
OF A SET UNDER R

'

The inverse image of a set B under a binary
relation R

is the set

R
- '
( B) = Ia Edom ( R) : Ca

,
b) ER ,

be B}
.

INVERSE OF R

'

The inverse relation
R
"

of a binary
relation R

is defined by

R
- I

= I 2- c- ran CR) x
domcr) : z

-

- Cb
,
a)
,

Ca, b) ER } .

COMPOSITION OF R
,
& Rz

'

Given two relations R
,
& Rz , the composition of R , & Rz , or 122012 , ,

is defined by

Rzo R ,
= IzEdom (R,) x ran

( Rz) : Zeca, c ) ,

where Ib 7 Ca , b) ER , Acb, c) C- Rz
} .



EQUIVALENCE RELATIONS ORDER RELATIONS
'

A relation R on a set A is : PARTIAL ORDERING

① reflexive if VAEA ,
aka :

-

A relation R is
' '

antisymmetric
"

if

a Rb ⇒ bra;
a Rb & bra implies

a=b .

② symmetric if V-a.be A ,

③ transitive if Va
, b.
CEA

,
a Rb A BRC ARC -

-

A relation
"

I
''

on a set A is an

order relation on
A if it is reflexive,

relation if it is
' "

A relation is an equivalence antisymmetric
and transitive -

Z -

partial ordering on A

reflexive, symmetric & transitive -

we also call £ a

eg
the identity

relation R on A ,
where

EQUIVALENCE CLASSES
R -

- Ica, a) : a C- A } .
'

I Let E be an equivalence relation on a set A
.

- R is reflexive;
the equivalence class

carb , bro ⇒
a :b, be ⇒ ae⇒

ARC)

Given an
element at A , - - R is transitive

ofamoE is the set
- R is antisymmetric . Carb ,

BR?
⇒ a -- b ' )

. .

"

A relation R on a set A is asymmetric
[a ]⇐ = IKEA : a Ex } .

if a Rb and b. Ra cannot be simultaneously
true .

"

We can prove
that : "

z
"

on
A ,

we can

1) a Eb if and only if [a] -- Eb] i
and

'

For any partial ordering
. .

,
. . from it by declaring

define a strict ordering

2) - a Eb if and only if [a] A [ b) = ¢ -

ah b if a Sb but a # b .

that V-a.be A .

( Proof : MATH 147 WAI Ara)

TOTAL /LINEAR ORDERING
PARTITIONS

'

For any partial ordering
"

I
''

on A
,
we say

'

-

'

Given any
set A

,
a partition P of A

"

comparable
"

if either afb
of non - empty

sets that satisfy
is a collection a

,
be A ore
-

the following : or b Ia -

① P
,
h Pz = 0 VP, , Pz EP ; &

A total linear ordering is a partial ordering

of elements
are comparable .

② Up-_ A -

in which every pair

' ! Every equivalence relation E on
A gives

( proof from
above ' ) CHAIN

a partition of A -

'
'

"

For any partial ordering
' '

I
' '

on A
,
a

→ Denote AIE = dilate : a c- A } .
Set CEA is called a

chain if every pair

of elements in C are comparable -

'

We can prove
AIE is a partition of A

-

a C- [a] . ( as a Ea) .

Pneof . [a] # 01 since

LEASTfarEATEST
ELEMENT

[a] A [ b)
= ¢ ; ie they

Then Va
,
BEA

, i i

.

Let A be a set with a partial ordering
' '

I
'

!

are disjoint
- ① I

Let BEA .

Then
,
an element be B

is a

Next
,
VAEA

,

a c- [a] . ( since
E is reflexive) .

least of B if b f b
' V- b' EB .

Hence UCEIA) = A .

-②

① & ② are sufficient to prove
the claim - 1B

-

similarly , b is a greatest of B

if b ' I b tf b' EB .

Then , let P be a partition
on a set A .

MINIMAL / MAXIMAL ELEMENT
let the relation E be such that if

⇒ pep such that alt P & SEP' then a "
Z
'

.

Let A be a set with partial ordering
"

I
' '

'

equivalence
relation .

an element be B is a

we can prove
E is an

Let BE A .
Then .

. . . .

there are no smaller

Proof- minimal element of B if

① For any
AEA

,
7- PEP containing a , as

P

elements of B
;

is a partition . Hence aEa VaEA i thus

ie if b
'

I b for some b' c- B
,

then b -- b
'

.

E is reflexive .

② For any
a
, ,azEA such that a

, Eaz ,
it must

'

Similarly , b is a maximal element of B if
a
,
EP & azEP . Thus

be that 7- PEP ⇒ -

also .
there are no

' '

larger
" elements of B ;

AzEP and a
,
EP
,

implying azEa,

ie if b. I b
'

for some b' c- B, then b -- b
'

.

Hence E is syc .

③ Let a
, .az , age A

such that a ,Eaz and azEaz .

Suppose a
,
ER

,
& azEPz , where R' REP & PHB '

'

'

Note : a least element is always minimal ,

By definition, azep, and aztpz -

However'
but a minimal element may

not be a least

which is a
contradiction as ftp.

element . But there are infinitely many
this implies P

,
h Pz # & b

azep, ,
and so 9%3 '

eg for a, be It : let
a Eb if a-

← It
minimal elements :

Thus 13=13 , implying
Then I is a least element , as it

divides every every prime p is minimal ,

Hence E is transitive
'

since it
is not

divisible by

+ve integer .transitive & reflexive, E is

④ As E is symmetric'
so we

are
done- Be

However , q+yq , } no longer has
a least element;

any other +ve integers
other than

an equivalence
relation -

and

there is no other integer
that divides both 2 & 3-

, and itself .

SET OF REPRESENTATIVES
BOUNDS ON SETS

relation on a set A .
' :

Let E be an equivalence .

Then
,
an element YEA is the greatest

! Suppose
A is a set with order relation

' '

I
"

.

set of representatives
for E

lower bound / infimum if it is the greatest
A set X is a

one element of
each

lower bound on BEA

if X contains exactly Then
,

TEA is a
-

possible lower bound -

lowest
if d 2b V- be B .

equivalence
class;

similarly , an
element PEA is the

×n[a] = Ig} for some a- Ea] . upperboimd on B

/ supremum if it
is the lowest

ie HEA] E Ale , similarly , PEA is a"

upper
bound

if b Ip
Tbt B .

possible upper
bound -



Chapter 3:
Fundamentals of Set Theory II
THE AXIOM OF CHOICE
' "

Let C be a collection of sets
,
where Ctcf. WELL- ORDERING THEOREM

"

I
' '

is well -ordered
"

'

A set A with order relation
-

Then
,
the Cartesian product t.ec is the set

if every non - empty subset of A has a least

of functions or :C → UC ,
with the property

element .

that tree
,
KC ) E C

.

'

Then
,
the WOT states every non - empty set A has

*
note : this deff works for both finite and

there exists an order relation
a well - ordering ; ie

infinite collections of sets .

£ on A such that A is well - ordered (
with respect

'

The Axiom of choice States every Cartesian
to z . )

product of any non - empty collection of sets is

'

Again ,
WOP is also logically equivalent to the Axiom
-

non -empty .

of choice .

ZORN'S LEMMA
'

ZL states that for any partially ordered set A
,

with order relation I , if every
in A

has an upper bound in A
,

then A has

a maximal element .

We can prove
Zorn's Lemma is logicallyegu.ua/ent-

to the Axiom of choice .



CARDINALITY
'

Two sets A R B have the same

cardinality if there exists a bijection f : ATB ,

and write IAI = 1131 .

'

Then :
*shown in

① IAI = IAI
VA ;

② IA 1=1131 (⇒ IBI - IAI F- A ,B ; &
A-402 .

③ IAI -_ 1131 A IBI -- ICI ⇒ IAI - ICI VA,B,C
.

}
11

E
"

ON CARDINALITY
'

We say
IAI E 1131 if there is an

infective function f :
A -713 .

'

Then
,
we can prove for any sets A

, ,B , A :

if A,E BE A ,
then IAIKIAI implies 1131=1At -

Finally , let D= Alc - Define g : A-713 by
PIF . Since IA , I .

- IAI
,
f: A ,→ A is a bijection -

gcx) = qffcx) ,
xec

Then
,
let Ian} , Ibn}

be such
that

X
,
XED .

Anti- f-CAN
) & Pontiff Bn) then .

Ao=A & Bo -- B,
and

If ×ec , then fcx) E Cn for some
n ? ' '

we can use induction to prove Ant, E An the N -

implying fcx) C- An .

Moreover ,
since Ao Z A ,

Z Az - - -

,
we can deduce

A , EB by construction ;
Next

,
set Cn = Anl Bn for some n .

f-(x) EA ,
.

We also know

Let C=noCn - Then
,
if a C- f-Ccn)

,
then a- fcc)

consequently , fcx
) C- B .

By deft , CE An & Ck Bn '

similarly , if
XED

,
then xctc .

This implies Ket co ,
for some CE Cn -

and hence KK Al B ,

so 7×413 ( ie KEB .)

implying fcc) C- f- CAN) = Anti -
Therefore , theEA : gcx) C- B . ( so g : A-

→ B . )

similarly, fcc) EffCBN) , as if fcc)=fCb) for some
be Bn .

Next, suppose x
, .kz

C- A such that gcx,)=gCXz
)
.

then necessarily c- b Cas f is injective)
and so CE Bn ,

If x , , >Cz C- C
,
then fcx ,) = fcxz

)
, implying x ,=Kz

since

which is a contradiction .

We now know fcc) C- Anti) Britt
= (

htt
; hence fkn) E Cn-H ' f is injective . If

x
, ,xzED, then clearly 34=75

also -

On the other hand
, if AE Chi, , then a C- Ant, & act Bnt, , and so

If ×
,
ee & xzep, then fcx ,)=Kz i

however FCKPEC

whilst Kzcf D , so this is a contradiction .

a = f- Ca
' ) for some a' C- An . Since act Bnt, , we also know a' Et Bn .

A similar argument
also shows x , C- D

& Kzec leads to a

Thus a
'
Ecn ,

so that a = f-Ca
' ) C- f- (Cn) .

contradiction too .

Therefore Cnt , E fan) ,
which implies Cnt, = f-Ccn) .

Therefore , x, =xz , proving g is injective .

Subsequently , if a c- f-CC)
,

then a=fCc) for some
CEC .

a-- fcc) e fkn)= Cnt
. Similarly , let be B be arbitrary .

Then CE Cn for some MEN , implying
If b. efcc) , then IC such that fcc) -- b , so gcc)=f4)=b'

or BED . If bed, gcc)
-

- b trivially,
proving at Cn -

µ If bcffcc), then either be co

be AIB ,
contradicting the assumption that BEB .

Conversely , if AE U Cn ,
then a C- Cn for some new .

n=1 and if b. C- Co , then

gcc)
-

-
b . This is sufficient to

In particular, since Cn
-

- f- Ccny)
,

a C- f- ( Cn- i) i thus
Therefore f- be B

,

7- CEC such that

a -_ fcc) for some C C- Cny , implying a Efcc) . show g is surjective -

* it is also bijective.

Therefore , since fcc) and tf
,
Cn have the same elements

, since g
is both injective R Swiech've .

and we are
done . Be

by extensionally fcc) = Cn . Therefore IAI -_ 1131 ,

'

'

From here
,
we can show

' '

f
' '

behaves like
'

We write IAILIBI to signify
an order relation; ie

IAI E 1131 but I Alt 1131 .
① VA

,
B
,
C : IAI E 1131 A 14=1 At ⇒ ICI E 1131 ;

ie E is

faa,
'

! , !zB,
' f , !? Ycl, Ya,

'

! !!! ' } " transitive ". Note that for all sets 131=0, 101<1131 .

Prof . Note that the empty relation from 0 to
B

is both vacuously a function and injective,
② ( Cantor - Schnider - Bernstein Theorem) ie E is

FA
,
B : if I Alf IBI & 1131ft At , then IAKIBI - } "antisymmetric

"

. but not surjective ( and so not bijective - )

This is sufficient to prove
the result-

pg

Preof . All the results of ① can be proved

by noticing Cgof ) is injective if

both f & g
ane injective .

We now prove
② .

Suppose we have injective functions f.
A-113 and g :B

-3A, for

some sets A & B . Then Cgof ) : A → A is also injective -

Then
,
let X=gCB) and Y=gCfCA)) .

Clearly XEA , and since FCA) EB we get that Y= g.CHAD E GCB) = X .

Additionally , since Cgof) is injective , it is also a bijective function

from A to Cgofka)
-

- Y . Hence 141=1Al .

Therefore , YEXE
A . By the previous proof, MIHAI implies 1×1=1 Al .

But since X=gcB) , and g is injective ,
we must have g :

BH is a bijection .

So 1×1=1131 , implying IAI = 1131, which we wanted to show '

tag



FINITE / INFINITE SETS

THE IMAGE OF A FINITE
SET UNDER A

it has the same
'

; A set A is finite if -

FUNCTION IS
ALWAYS FINITE

cardinality as some
MEN .

Suppose f : ATB is a function .

In this case
,
we write IAI = n .

.

Let A & B be sets ,
such. that

A is finite .

Then FCA) is a finite
subset of B

,
& IfcA) If IAI .

We can prove
the N

,
there is no

since the proof is trivial if A-¢
.

injective mapping from n to XC n .

Puff . Assume IAI 31 ,

'Inf. Suppose
such a mapping

exists .

Then A Yao , a, , - . any } . So HAKI Hao) , Ha ,) . . . . Han- p}.
Then by WOP

,
there exists a least element new

Subsequently , let bo -- Hao) , and then find the least

which satisfies this property .

index i
,
> O for which f-Cai

,
) 't f- Cao) ( if it exists)

clearly n to
,
since there are no proper subsets of

O .

( n - 1) AX .

Then
,
either Cn - 1) EX

or and set b
,
= f-Cai

,
) .

Again , if Ebo,bist FCA) , then we continue
this process

If ( n- 1) FX ,
then XE Cn - i) .

subsequently , if f
:n→X is injective , we

can define
until it does

, since we know Ociicizl - i
cannot

mapping g :(n
-D → Xlcifcn-t)}

a new injective surpass n - l .
*

g is the
' '

restriction
"

off
for some MEN , provingby gck) = fck

) VKE ( n- t) -

to the set n - I . Hence f- (A) = Ibo , bi . - - bm-I }

the former claim . #
Then g is injective as f is

,
and g maps

(n- t) to a

Then,
let the function g : FCA)

→ A by glbo)
-

- ao & gcbu)=aiu the> O .

proper subset of
Cn - t)

, since XE Cn
-D

.

Clearly g is injective ; therefore IfcA) If IAI . DE
This contradicts the minimality of n .

On the other hand
,
if Cn-1) EX

,
we know Cn -D=- fck)

( since f is injective .)
for some unique hen THE UNION OF A FINITE COLLECTION OF

Then
,
let g. Cn

-1) → Xl In-13 by
-

SETS IS ALSO FINITE
gci) = {

Hit
,
it k

f-Cn- t) , i - K .

Again , g is injective ,
and it maps

( n-t) to a proper
subset

-

Let A R B be finite sets . Then IAUBI E IAI -11131 ,

with IAVBI = IAI -11131 iff Ah 13=0 .

of itself , which contradicts the minimality of n .

ie A- ciao , a , . - i am,} &
proving

our claim .

Puff . Let IAI -- m and 1131 -- n ,

Thus no such n exists ,

B -- Ibo, b, . - - bn - i} .
UNIQUENESS OF CARDINALITY

Then AUB = Ciao , 9 , - - amy , bo , b, - - bn-,} , implying
-

For any finite set A
, if IAI - M & IAI -- n ,

(AUB) has at most mtn
elements .

then m-- n .

elements might
be repeated, IAUBI

Puff. If Mtn,
then either men

or n Em .

However, since some

hence I AUBLE (mtn)
-
- IAHIBI .

However, by the above proof , both cases lead

might be less than Cmtn) ;

to contradiction -

Hence necessarily m=n - B
"

for any finite collection of sets S
,
US is also finite -

Pneef . If
5=0, US = 0

,
establishing our base case .

N IS INFINITE
5=4 Ao , Ai , - . An-13 the claim holds .

' "
we can prove

N is infinite ,
Then

,
assume for some

ie not finite .
Subsequently , An U ( US) is also finite by the above proof ,

Puff . Consider d : N -7N by den)=2n .

implying the claim also holds for S -- Ino . Ai , - - An} .

Clearly, d is a bijection ,
but

the claim .

#
the set of even

numbers is a proper

By induction , this is sufficient to prove

subset of all naturals !

Hence N cannot be finite , as

it would lead to a contradiction otherwise .

THE powER OF A FINITE SET IS ALSO

SUBLETS OF A FINITE SET ARE ALSO
FINITE

FINITE . for any finite set A , PCA) is also finite .

'

Let A be a finite set
,

and BEA .

Puff . If A=0 ( ie I Also) , then RCA)= 403 , which is finite .

and B is finite also .

Then I Bl E l Al , '

= ciao , a , , . . an- ,} for which
( :B → A given Then

,
assume for some set A

PIF .
First

,
let the

"

inclusion mapping
"

by cc b) = b VBEB - ACA) ) is finite .

injective , showing IBIEIAI -
i

subsequently , let A = A V fan} .
Clearly this mapping

is

where B = I BEPCA) : an EB } &

Then
,

let IAI = n for some
new .

Then PCA) = BVC
,

If n=o, 1131=0 necessarily , implying *&
C = Ice pea) : any c } .

Clearly BAE
= Ol -

we consider what happens if n > l
.

Subsequently , observe IBI = let = IPCA
' ) ) .

First
,
let A - ciao , ai , - . an- i} .

Otherwise , since I #ADI is finite , necessarily IBI & let also are
.

Then
,
if 13=0, we

are done .

least index i for which 9- c- B .

Thus IpcA) I = 1131 + let is also finite -

there is a

to prove the
claim . Be

call this element bo .

By induction , this is sufficient

Again , if B= Ibo} , we are done . otherwise,

F- i
,
> i such that ai

,

E B
,
and call this

element b, -

Then
,
if B -- Ibo , b, } , we are

done .

Otherwise , we repeat this procedure until we get B .

Since A is finite , this procedure
cannot go on indefinitely ;

thus 7- MEN such that B -- Ibo, bi . - - bm-I } -

This is sufficient to prove
B is finite . ④



COUNTABLE SETS 7L IS COUNTABLE

A set A is
' '

countable
"

if
'

'

we can show that 174=1 NI -

IAI = INI . pneof . Let ah ,
d
,

-42
,

k is even

( htt)/2 , k is odd .

A set A is
"

atmos countable
' '

}, tahoe eighties
thes

if IAI E INI .
1) finite; or Then clearly Eau} = Io, - I , I , -2,2 , - - } ( = I ) .
2) countable .

So each integer is hit exactly once ,
so this

'

For any
countable set A

,
there exists

is a bijection from N to 2 .

*
a bijection f. N → A ;

ie we can write

out the elements of A as an infinite
IQ IS COUNTABLE

sequence ;

A- = ciao , a, .az .
. . }

'

We can similarly show l Q1 = INI .

EVERY SUBSET OF A COUNTABLE SET
'Iof. the Q , 5- I , where a. bee & bio.

Hence every
rational number can be associated

IS AT MOST COUNTABLE to an ordered pair (a. b) of integers .

So I l E 12×21
,

and since 2×2 is countable
,

'

Let BEA . If A is countable,

Q1 must be at most countable .

then B is either finite or countable .

However I E Q ,
so 121 E IQI .

Pref . If B is finite we have our conclusion
,

by the Cantor - Bernstein
so suppose

B is infinite . Since 121 = INI = 12×21 ,

Let ko be the smallest index Ko such
Theorem I ④ 1=1101 ,

as required -
Dk

that auo C- B
,
and set bo = auo .

Then
,
let k

,
be the smallest index laser THE UNION OF COUNTABLE SETS IS

than an,eB , setting bi -- aui COUNTABLE
Subsequently , we continue this process for

'

; let A and B be countable sets .

each ie N , as since B is infinite,

Then AUB is also countable .

B) Ebo , b, , - - bi . , } t 0 -

PWIF. Again , we can write

Hence B= Ibo, b , . . }
= ciano , au. . .. } ;

so B is a

A- = ciao, a , .az , - . } and B -- Ebo , b , .bz, . - } .

Subsequence of A
, and we are done . #

Then
,
let the sequence

Icn} by Steak & Czw,
-_ bn V-KEN .

THE CARTESIAN PRODUCT OF COUNTABLE
at ⇐ yen} . It follows

that since AE AUB and AUBEL

SETS IS COUNTABLE thus
IAI E IA UBI f

l Al -11131 .

-

'

:

let A and B be countable sets .

in , = , µ , = IAI -11131 , by the Cantor - Bernstein - Scheider

I A×B is also countable . However since
Then necessarily

theorem we must have that IAUBI = N , and we are done . #

Pref . Since IAI = INI = 1131
,
we can represent them

"

collection of countable sets .
as infinite sequences '

and B -- Ibo, b , .bz,
- - } - "

z
Lef Ao, A , . . An

be a finite
ie A- = Kao, all 921 - "

}
n

Then ( ai , b;) ECAXB
) ✓ "JEN .

Then UA , is also countable .

i -- o

we can then define a bijection from N to AXB

Phoof . Again , we can use
induction .

by the following: → If n= , , this is just the above result .

→ Cao , bz) - -

Cao , bo ) Cao -bill since every
ordered

suppose the claim is the for
n=N '

f pair only gets
hit

Ntl N

(ai ' bo ) ( al , bi ) "

once
.. in this way .

So

U A ,
= ✓ Ai V ANTI

( (as , b ) / '

. this proves
AXB is i -- o i w

° countable wulntable
countable .

*
Ntl

'

Hence U Ai is also countable , and so the claim is the for n -- Ntl .
' i:O

It follows by induction that the claim is the V-new .

*

Let Ao , Ai , - ' An be finitely many countable sets .

"

"

Let Ao, A, , Az - .

be a countable collection of countable sets .

Then it Ai is also countable . -

N

this is the result above . Then U Ai is also countable .

Pff . When n="
i=o

Suppose
the claim is the for some n=N

.

PIF ' let Ai = Iai,o , ai, , , ai ,z ,
- -

- } for each IEN .

Then clearly
Then we can define a bijection between the elements

Ai = Ito Ai × Aunt -

of ¥oAi and N by
✓ I

wulntable countable
Hence I

,

Ail = INI ,
→ a( assumption) a

a 2,0

0,0 " O and we are done - #
Hence i¥

"

Ai is also countable , proving the y
a
L

c. ,
/
?

claim for n
-

-
Ntl . o

, , a a d
'

I , I 2
, I

( By induction ,
this is sufficient to prone

a / .

.

0,2 a
C

f
the claim.) # . 112 a

' f : 2
, 2

t
.

- d ← i
these are these are '

'

these are
all in Ao all in A , all in Az

°
"



UNCOUNTABLE SETS
PCN) IS ALSO UNCOUNTABLE ,

IR IS UNCOUNTABLE

AND (PCN)1=11121
; First , we prove

that the open interval ( 0,1)

proving
PCN ) is also

has the same cardinality as IR ;
' "

we can also show IPCN ) 1=11121 ,

ie there exists a bijection f
:(Q1) -7112 .

uncountable .

We claim flx) is a bijection - PCN) has the same

Proof . Let f-G) = . peg. Again ,
we can just prove

cardinality as the interval ( 0,1) .

Suppose fca) = f-Cb) for some a. be ( 0,1 ), atb
.

Then
,

let f :( 0,1 )
→ PCN) by the following :

Then a'ja =

'III, .

with decimal expansion r=obib2b3 - -

'

Given a recoil)
,

⇒ O = ( a - b)(atb
- Zab - t) .

let f-Cr) = delon
-'

bn : newt } .

we get
that atb -Zab

- 1=0 .

Since atb
eg r= } ,

fer) = 43,30 , 300'
- -

- }

This implies
ab -- atb -ab

- I = - ca - 1) Cb - t) .
We claim f is injective .

- ca -1) Cb
- t) L O , since a. b eco , I) ;

However ab > O and pewof . Suppose for)=fCs) , for r.SE ( Oil) .

+has this is a contradiction ; hence f is injective ' cetr-o.b.biz . . . and r=O -gczcz - . .

Then
, suppose

f-(x)=r . Then for any ie Nt, 10
""
bi E R ,

so 10
""
bi E S also .

This leads to r= 1-4×2
-X -

÷:÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷:÷÷÷÷÷÷.
"

'

÷÷÷÷÷÷÷:÷÷÷÷÷i÷÷÷÷÷÷÷:÷÷:÷÷÷÷: "
Hence r-2tF > o . pwning wi - I bi = Ioi

- '
c ; ,

so bi - Ci '

Zr

2) if bi=0 , then OER ,
and so there is no integer

we also can infer-2) tNr4T
c 2r

,

between Ioi -1 & g. Ioi
-t in R .

So r -2 + Wrky
- L l .

the same
holds the fo- S . -

Zr Then since 12=5
,

There is a similar proof for when
re O '

thus Ci - O as well -

Therefore for any RER
,
there exists an xfcocl)

Since r and s agree in every decimal place ,
such that fcx)=r , so f- Cx) is surjective (

and

r=s ;
hence f is injective .

hence bijective ) . Da

-

we can now prove
IR is uncountable .

Next
,
let g

: PCN) → ( 0,1 ) such that

Puff . We can prove
IR is uncountable if we show

FA EN : g CA)
= O - 9,9293 - - '

.

(0,1) is uncountable , so we will do
so .

Then we can write out where
a ,
= 4,4

,

,
it A

Suppose
IR is countable .

if A
all the real numbers in a

list :

subsequently , we take the Then ai eco , ,)
with an unique decimal expansion .

O'④bizbb 44 - -
-

diagonal
"

digits
" of each

Suppose A
,
BEN such that GCA )=gcB

) .

O - bzibzzbzzbzy - ' ' number ( circled in purple) ,
and construct a number r=O. qczcz . . .

O ' bz , b3zb33
↳
34

' '
' ⇒ O .

a
, Azaz - . .

= O
.
b
, bzbz - - -

.000 by
g. = 44 ,

bii # 4 field , implying
° . by, byzby3b44

-
- i

5 , bii=4 .

Then necessarily ai
-

- bi

that if IEA ,

then ie B ,
and vice versa .

Then
, by definition, rtri VIEN

,
as r differs from ri

Hence As B & Bea , proving
that A=B '

in the ith decimal place .

so g is injective .
showing

R is uncountable . Be

So 111217 INI , since there exist injective functions

f- : ( 0,1 ) → PCN ) and g
: PCN) → co

,
' )
,

consequently Ico, 1) I = IPC I
,

and so 11121 = IPCN)l . BE



Chapter 4:
Algebraic Structures
BINARY OPERATION

CLOSED UNDER *
' s Let S be a

set . A binary operation

from Sxs to S
-

: for any binary operation * on a set S
'

on S is a function
we say that S is

' '

closed under *
"

binary operation ,
If * : 5×5 → S is a

if V-a.be S : a * be S .

we write a * b instead of * Ca , b)

as the output of * ' MONOID
'

'

j Examples of binary operations : '

Let s be a set with binary operation * .

① t, - , ×
on 7L or R ( NIT ÷ ! )

Then S is a

"

monoid
"

if * is both

associative , and there exists an identity

② ÷ on R*= 1121403

element e ES with respect
to * -

③ U and N on
PCA)

*
' '

ab
"

= a * b
,

we use the
notation

ASSOCIATIVITY
and

' '

an
' '

= axax - - - Xa

y
.

with a°= e ,
'

Let * be a binary operation on S -

"
"

" where e is the identity element wrt * -

Then * is associative if Va
,
b. CES ,

'

we can prove
the identity element of any

monoid

we have ( a * b) * c = a * ( b *
c) .

We can show if a
, .az .

. - an are arbitrary is unique-
which has two identity

1¥ .

let s be a monoid
elements in S

,

with n > I
,
then

elements
,

ie e ,
and ez .

A
,
* az K - -

i * an is well -defined , regardless

bracketing in the product - Then faces
,

ae ,=e,a=a
and aez=eza=a-

of the choice of
of a , .az, -

-
' Ian , so if a ez ,

then Eze , = e) ez = e2 '

Pref - we let the
"

standard product
' '

( a, .az .az , . - , an ) , to be defined and if a= e , ,
then Eze , = eiez

-_ er -

denoted as

recursively by Ca, > = a , ,
La, .az?=al*aZ

'

Thus e ,=ez , pwning uniqueness . 18

( a
, .az,

- -
-

,
an-17 * an Vn

73 .

and Ca
, .az . - - i. an

> =
UNIT & INVERSE

( so La, .az/az7--Ca,txazl*a3
;

For any
monoid S

,
an

element

(a, ,az.az/ay7=((a,*az)*az ) Kay
; etc . )

,

AES is called a

' '

unit
"

of S if there

we claim every product of the n elements is equal to

exists some bes for which ab=ba= e .

the standard product'

there is no choice of bracketing : thus
the

where e is the identity element of S
.

If n=l or n=2
,

claim holds trivially in these cases '
i

.

In this case ,
we can b the

"

inverse
"

true for 1,2, - . -

,
n elements

,

2

Then
,
assume the claim is of a .

ntl elements of S
,

"

a-
I
' '

or

' '

-a
"

and suppose we are given *
we usually use the notation

eg a
, .az ,

- -
-

i anti
'

to denote the inverse of a
's

subsequently, any product of these elements can be expressed

in the form b * c
, where b is the product of some

elements and a-
m

= (a-1)
m

,

a
, .az , .

. .

,
au with IS KEN, and c is the product of

the
'

"

j Once again , we can show the inverse

monoid S is unique.
remaining elements anti. . . . , anti

. of any unit in a

and aes be a unit .
But since b= ( a, .az , - - - , ah ? and c= ( anti ' ah -121 - ' ' an >

, pµf . Let S be a monoid
,

Suppose b
,
& bz are both inverses of

a ,

we can express b * c by

b * c = ( a, , az , . . .

, au >
* (( anti , Antz , -

i - an >
* anti) so that ab,=b,a=e and abz=bza= e .

Hence b
,
= bye = b. (abz ) = ( b

,
a) bz = ebz = bz ,

= (( a, .az , . - i , ak ) * ( anti , au -12 , - - - an ) ) * anti

pwning b,=bz , giving the desired uniqueness . Da
= ( al , az , . - - , ace , ant, . .

. .

, an , ant
, ) ( by induction

Hence the claim is also the for htt .
hypothesis) .

Therefore , by induction , the claim is true the N - Dh

COMMUTATIVITY
' "

Let * be a binary operation
on

S .

Then * is
"

commutative
"

if the,bES
,

we have a * b = b*a .

UNITY / IDENTITY
"

Let * be a binary operation on S .

Then an element ees is an

' '

identity
"

for * if a * e
= e. * a

= a Fae S .



GROUP
MANIPULATING EXPONENTS IN

'

A set G is called a

"

group
"

if

G is a monoid , and every element A GROUP
Let a be a group ,

and gea .

of G is a unit .

Then V-n.me 2L , gntm-gn.gr.-

Hence
,
a set a with a binary operation

is called a group if i pivot . If no , gum = gm trivially -

ie ( ab)c= a Cbc) Va
, bi CE

Gi Assume the claim is true for some NEN and all MEN '

① it is asie,

ie Ieee such that ae=ea -
- e Vath : & Then gn

"
- gm = (g. gn ) - gm② there exists an identity ,

ie Iaea : 7- BEG such that ab=ba=e .

= g. (g
"
- gm )③ every element of G has an e,

= g. g
" ?

ABELIAN GROUP
If mm > o , then the RHS is the result of

; A group
a is further considered

"

abelian
"

multiplying ntm copies of g by one more 9 '

* on G is also

if the operation which is glum' +1 by definition .

commutative .

If ntm= - I , then the above is equal to g
-g
- I
,

'

'

Hence , any
abelian group

G satisfies the 3

which is equal to e=g°=g
"'m)

+ i .

properties above
,

in addition to :

Lastly, if ntm E -2 ,
then the RHS is multiplying

④ it is commutative ; ie Ha
,
BEG : ab -- ba .

which results
-

lntml copies of g-
' by one copy of g ,

EXTRACTING A GROUP FROM
in lntml - l copies of g-

'

,
which can again

be

.

Cntmltl
.A MONOID written as g

"
Let M be a

monoid , and M* be

A similar argument
holds if NEZ and MEN .

the set of all units of M .

Hence the claim is true Vmi NEI . by induction ,
Then M* is a group

.

So we are done . Dh
Pewof . Let a ,

be m* be arbitrary .

Then by def ? , a
" & b

" exist '

Similarly, for any group
G
, if 9th,

such that aa
-'
= e & b. b-

'
=e .

then Cgm)
"
= gmn Hm

,
ne 7L .

Hence (ab) ( b-
' a-1) = acbb

-1) a-1

Puff . If no, then Cgm)n= Cgm)0=e=g°,
so the claim is true .

= aea
- I

= aa
"

Then
, if the claim

is true for some MEN '
= e

.

We can similarly show ( b- la-1) Cab)=e also . it implies Cgm)
""

= Cgm)
"
' (9M)

"

This implies ab is a unit , with
inverse = gmn . gm

b-
'
a' ! = gmcntt

)
;

Hence Mt is
' ' closed

' '

under the binary
so the claim is the time I

,
NEN -

operation on M .

However
, if he 2-

,
then Cgm)

"
= Cgm)
"

fr some LEN.

Subsequently , M
"

is also associative & has an

But since for any heh
,

h
-l

= Chl )
- l
;

identity element , as M has those properties .

an aem* has an inverse ' thus Cgm)
-e

= (Cgm)e)
-'
= Cgme )

-I
= g-ME gmt

-l! gmn.Furthermore
,
since I

group ,
and we are

done
. ④

it implies Mt is a

go the claim is the Fm
,
ne I

,
and we are done - B

'

Lastly , if g.he
a commute

,
ie that gh=hg ,

where G is a group,
then Cgh)

"
= gnh

" the 2 .

Puff . If n=O
,

then Cgh )° = e = ee = goho, so the claim

is true for this value of n -

Then
,

assume the claim is true for some net .

It follows that Cgh)
""

= Cgh )
"
. ( gh)

'

= Cgnhn) . gh
= gnchng) h

= gncghn) h
= gntlhnt !

So the claim is true theN -

Lastly , if n= -l for some LEN,

then Cgh)n= Cgh)
-e

= ( Cgh)l ]
-I
= (gene )

-'
= Che)

-'
(get

'

= hey -e = hngn = gnhn (since g.
h commute )

.

Hence the claim is true the 7L
,
so we are

done - Be



CYCLIC GROUPS ORDER OF AN ELEMENT
SUBGROUP '

. Let a be a group .

Then
, for any gea,

'

Let a be a group ,
and GEG be an

the
''

order
"

of g ,
denoted by 0cg) , is

element . Then

( g>
= degk : KEI } is a group

in G
' the smallest integer n > I such that gn=e , if

called the
"

subgroup of a generated BY 9
"

-

such an integer exists .

Puff . we know V-gm.grEcg), gm - gn -- gmtn Ecg? If gn # e In > 1
,

then we say 0cg ) =D .

So (g) is closed under the group operation
on a -

a restricts to a binary ORDER OF THE INVERSE OF AN ELEMENT
Thus

,

the operation on

operation on Cg >, and so it is associative '

'

Let a be a group
. Then

, for any gea,

by default . 0cg
- t ) = 0cg ) .

Furthermore , e=g° C- (g) ,
so an identity exists

,

and for a given gm
there exists its inverse g-Meg>

Puff . Caused : 0cg) = a .

Then the> I , gkte .

as gm .g-m=g°= e . So Cg
-1)

''
te also

,
so 0cg

") --N .

Hence (g> is a SMP -
Dh

case 2 : 0cg ) = n , ht N -

-

CYCLIC GROUP Then n is the smallest tire integer such that gn=e .

: A group
G is called a

"

cyclic so ( g
-

1)
n
= e .

"
Cg
-ym=e, taking inverses of

group
"

if a = Cg> for some

If Iman
such that

implies that gm=e ,
a contradiction .

GE G . both sides

In this case ,
we say

that 9 So ocg
- i ) = 0cg) = n - Bk

is a
' '

generator
"

of a .

ORDER of ELEMENTS IN A FINITE GROUP

THE SET OF INTEGERS MODULO n i

If a is a finite group
Cie it only has finitely many

elements) ,

For any
n C- It

,
the

' '

set of integers modulo n
' '

, then every element of G has finite order -

denoted by
"

7L/n2
"

,
is the

Puff . let G be a finite group .

set of equivalence classes of 7L under
-

the relation
' '

congruence
modulo n

"

,
which is Then for any gag , go , g

'

, g2, . . . cannot contain

infinitely many elements ,
so Im

,
near such that gm=g" -

a- b = kn ,
where KEI

.

defined by :

a b ( mod n) if
-

" This implies gm
-n
= e

,
so g

has finite order - DE

* this is also written

as n ta- b '

CONNECTING ORDER TO SUBGROUPS

we can prove
that for any NEI , i

Let a be a group ,
and get such that 0cg)=n , NEN.

Z/n2 is a cyclic group .

Then gk=gm iff KIM (mod n) , and glee iff n Ik .

pewof . Let [a]
,
Eb) E IINK . Puff . Suppose KIM (mod n) .

We can define an
" addition

"

operation by
So k - m = en

,

l C- 7L .

[ a] t Eb ]
= [ atb ] .

So gk
-m

= gen = (gn)l= e
, implying that gk=gm.

Why? → assume [ a]=[a
' ] and Eb) :[ b

']
.

Then a -a' = kn and b - b
'
=L " fr some Then, suppose gk=gm .

K
,
lek .

So gk
-M

= e .

( atb) - (a
'
- b

' ) = Cute) n .
Assume K-m = nqtr.

This implies
Hence

so at bz a' + b
' (mod n) .

so this operation is we" e=gn9+r = engr = gr, forcing r=O .

Thus [atb] = [a'tb
' ] ,

defined . So n Icu -m) , implying that k=m (mod
n).

Next
, + is trivially associative , with an identity [ ° ]

If m=o , then g. k=go=e
iff k:O ,

ie iff n Ik . Dk

and
any element [a]E2/n7L

has an inverse
E-a ] -

Moreover
,
t is commutative

,

so Ikk is an abelian
i

Let a be a group ,
and let GEG with 0cg ) -- n .

group under this operation - Then (g) = die , g. gz, . . .

, gn
- I}
,

where e. g. gz, . -
- ign

-'
area " distinct .

Lastly , since [a] = a. [ I ] Hae Io, I . . . -

,
n - I }

,

IKI is

Koot . clearly Ie,g, g? -
i

; gn
-I } E Lg) -

cyclic ,
with generator El ] . Be

Then
, suppose KEI ,

and k=nqtr-

since gk=gr, hence gkeie.gg?-.-ign-
' 3
,

so Cg> EIe.gg?.--.gn-B.

Subsequently , each element of Ee , g , . . - , g
" } one distinct

,

because if gk=gm for some him where Ofmckfn- I ,

then nl ( h-m)
;

this is impossible, so Kim
,

pwning the elements of this set are all distinct . Dk



SUBGROUPS CONJUGATE
-

'

-

let a be a group.
Then HEA

; for any group
a
,

the
' '

conjugate
' '

of H in G

is called a
"

subgroup
"

of G if

by some gea to be the set

H itself is a group
( with respect to

gHg
- I = I ghg' ' : HEH } .

the binary operation defined on G . )

*
note that ice } is a subgroup of h

'

Once again, we can verify that 945
'

called the
' '

trivial
"

subgroup of G -

is a subgroup of G -

Puff- since Hto. .
: GHG -1=10 also .

SUBGROUP TEST
'
"
.

Let a be a group,
and HEH

,
H #0.

Then
, for any a. be gH5! by deft

a = gh , g
- I & b= ghzg

" for some hi ,hzEH .

Then H is a subgroup of G iff

Hence ab
- I
= Cgh , g

- 1) ( ghzg-15
'

V-a.be H
,

we have ab
- '

c- H
.

Pewof . First
, suppose

H is a subgroup of a .
= Cgh, g- 1) (ghz

- '

g
- t )

Then Ha
,
best

,

b- ' e- H necessarily . = gch, hi
' ) g-

I

,

H is closed Wrt the operation
and since and since h ,hz-left

(by deff , since H is a subgroup),
" C

,
we get

that ab
- ' EH, as

desired. #

therefore gHg
- I is also a subgroup . D8

Then
, suppose

Ha
,
BEH

,
we have

ab- ' EH
.

Since H# 0, we can deduce that
that "

' NORMAL
H has an identity

element .
and H be a subgroup of G .

aa-t-e.CH
,
so

-
"
. Let a be a group.

Then
, taking any

BEH and a=e
'
we Get

Then H is a

' ' normal subgroup
" if all the

that ab
- I

= eb
- I
= b-

' EH
,
so each element

conjugate subgroups of H are equal to H '

of H is a unit .

Lastly , since the binary operation on G is associative ,

necessarily the binary operation on H is also associative . SYMMETRIC GROUPS

Therefore H is a group ,
and since HEH

,

it
-

; for any
new

,
the

"

symmetric group of degree n
"

follows that H is a subgroup of G . Dh
is the set of all bijection f: del, 2, - i

; n } -741,2, - - in} ,

CENTER and we denote the set by Sn .

'

For any group
G
,
the

"

center
"

of G
,

i
we can represent an element oesn as a sort

denoted as ZCG)
,

is defined to be
of matrix :

←

' '

input
"

the set

z(a) = I zeal zg=gz ttgea } .
ie

(
"

a
,

I
,

a! !!. In)r_ "

output
"

,

where ai=fCi ) .

we can show 2- Ca ) is an abelian '

For
any new

,
Isnt -_ n ! .

Subgroup of G .

Pywof . There are n choices for a
, .

Puff . Since eezca) ,
i 2-(a) t0.

( n- l) choices for az
.

( since f- is injective)
a. be 2-Ca

) . let GEG be arbitrary.
Then

, suppose and so on
,
until we get that

since bg=gb (as b. C- 2-Ca)) , therefore
there is I choice for an .

So the number of permutations of a
, .az,

- -- ian

b-
'

Cbg) = b-
'
gb ⇒ g= b-

'

gb ,

is ncn-D -
- - ( t) = n ! . #

and hence b-
'
E 2- Ca) .

It follows that
for n > 3 , Sn is riot abelian -

( ab
-1) g

= a ( b-
'

g)
= acgb

- t)

= Cag> b-
'
= cgaib-t-gcab.tl ,

Inf . let a- ( L ? } : ::L) and T -- ( '32,3 ::L )
.

and so ab
- '

c- zeal , proving Z'" is a Then
( rot ) = (; :3,

-

.

! ! !)
,

but ( too)=(! ? } !! ?)
,subgroup of h .

So ( 00T ) t (Too) , so Sn is not abelian .

Lastly , since ab=ba Ha
,
BEG ( by cleft ) ,

2- Ca) is also abelian , so we are done
.

Be

Note that 2- (a) = G iff G is abelian .

( so 2- Ca ) is a

"

measure
" of how commutative

the group is . )



HOMOMORPHISMS
'

Let a
,
and 62 be groups . KERNEL

Then
,
a function 0 : G , -762 is a

"

homomorphism
"

-

'

; Let 0 : G
,
→ 42 be a group homomorphism .

if Va
,
be Gi , we have

Then the
''

kernel
' '

of 0, denoted
"

Ker 0
"

,

(ab) = fca) . 0lb
)
,

is defined to be the set

where
"

.

"

denotes the binary operation on GZ '

Ker 0 = Ig EG , I 0cg) -- eaz } .
is a

Examples :
'

we can prove
that Ker 0

① The
' '

trivial
"

homomorphism subgroup of Gi -

Pw_of . We apply the Subgroup Test .

(a) = eaz
Vaea ,

first , kerf is non -empty :
- yea,)=eaz , so ea , E Ker of .

②
"

Reduction modulo n

' '

map
Then

,
if a. be

Ker 0, then

¢ : I → 7L Ink by okay -10lb))
- '

= ( eaz)
-

Lead
-'
= eaz ,

Cab' ) = Oca) 0lb
- t ) =

(m) = Em] Ime I

and so ab
- '
E Ker 0 also

,
verifying that kerf is a subgroup

③ The
' '

exponent
' '

map
of Gi . 18

0 : I → (g> , gea
that ¢ is injective

0cm) = gm IMEI
'

Moreover , we can also show

HOMOMORPHISMS
''

PRESERVE
'' ifyif kerf = Yea, } .

Pref . Assume 0 is injective .
THE IDENTITY

let GE Ker ¢
be arbitrary .

'

'

"
Let 0 : G , → Gz be a group

homomorphism .

Then 0cg) = eaz = Olea, ) , so by infectivity

Then Olea
,
) = eaz . of 0, necessarily g

-

- ea , , proving kerf -_ Tea,} -

Pyof. By deft . Then
,
assume Ker 0= Eea

,
}
.

(ea ,)
= Olea, - ea ,)=0Cea,)

- flea) .
suppose there exists a. bea , such that 0/61=04) -

Hence [0/(4,551-1064)]=[0/(4,554064510/64)] Hence Ca) . ( b- ') = 0lb) - 0lb
")

⇒ eaz= flea, ) , as required . Da ⇒ Cab
- t ) = eaz , implying that ab- 'e kerf .

. . . .
Thus ab- ' = ea

,
, implying that a=b .

HOMOMORPHISMS PRESERVE This is sufficient to prove that ¢ is injective .

INVERSES
'

Let 0 : a , → Gz be a group homomorphism . (OSETS
Then htgea, . 0cg-1) = [ 0cg))

'

! ' '
.

Let a be a group,
and H be a subgroup of G .

Puff . For each g EG, , observe that Then let the relation
' '

n

' '

on G be such that

0cg) . 0cg
- 1) = 0cg. . g-

t ) = Olea
,
)=eaz . ya

,
be a

,
we have a rub if and only if ab

- ' EH .

Hence [0cg ) ]
"

. 0cg) - 0cg" ) -- [0GB
"

- ear . -

; we can prove that
"

~

"

is an

equivalence
relation .

or that 0cg- 1) = [0cg)]
"

.

Puff. Since for any
AEG, , Ola - a-

' 7--0/64,)=eq,

HOMOMORPHISMS PRESERVE ana ; hence n is reflexive .

Then
,
for any a. BEG, , if a~b , it implies that

POWERS
ab
- '
c- H ; since H is closed under taking inverses

,

"

Let 0 : a
,
→ Gz be a group homomorphism .

we get that (ab
- '5

'

= ba
- '
E H also

, saying that bra .

Then FGEG , ,
KEI

,
we have ¢cg4= [ 0cg))

"

.

So ~ is also symmetric .
fkeN by induction . for some a

, b. CEG , ,
it implies

pewof . we first prone
this Lastly , if a - b & buc

that ab
- '

c- H and be-' C- H .

when k=o
, 0cg

' )= Olea
,
) = eaz= [0955,

But since H is closed under multiplication ,

establishing our base case . that arc .

hence ( ab
- 1) (bi' )

-
- ac

- '
c- H also

, implying
Then assuming the claim holds for some KEN,

( and hence an equivalence
relation ) . By

note that cxcgkt
' ) = Cgh . g) = 0cg") . 019) so n is transitive

= #(g) 3h . 0cg) = ( 09)]
" ! '

Then
, for any element at G,

so the claim holds V-KEN . the
"

right coset of H generated by a
"

is

defined to be the set

Subsequently , if he = -m fer some me It,

then Cgh) = 0cg
-m ) = 045'M) Ha = Iha : HEH }

,

of a with respect
= (g- 1) Im = ((0cg)]

"]m= (01955? ( 057 ! and is the equivalence class

and so this is sufficient to prove
the claim holds V. KEI .

to
"

n ,

THE COMPOSITION OF HOMOMORPHISMS
proof . [ a ] = de gea : gra}

IS A HOMOMORPHISM = Ige a : ga
- ' EH }

-
.

Let ¢ : a
,
→ a,

and 4 : 62-743 be group homomorphisms -
= d
, yea : ga

- I
= h for some htt }

Then ( yo ¢ ) : G ,
→ Gz is also a group homomorphism .

= I g EG i g=
ha for some

htt }

Puff. By deft , Ha
, ,azE hi , = Ha . DE

Oca, .az)
= Oca ,) . 0Caz)

and ycb, !bz) = 4lb,) ! Ylbz) V-bi.bz"" -

similarly , we can define an equivalence relation ~L on A

arts if and only if
b- 'a C- H .

where u

, , oz & oz
are the binary operations on

such that Ha
,
BEG

,
we have that

generated by a

"

for some AEG
q
,
Az , and 63 respectively .

Then
,
the

' ' left coset of H

if we let be
0cal) and bz=0Caz) , then

Hence is the set

yfojcap.ro/CazD--4l0CaiD.3Yl0Ca2" aH= Iah : HEH}
,

⇒ YC Ca
,

o

, az)) = 410cg)) ; 41064)
and is an equivalence

class of ~L .

⇒ ( 400) Ca,
o

, az) = ( yo 4) Cap ; ( Yo lad,

verifying that ( 404) is a group homomorphism as well
.

pg

Note that if G is abelian
,

then att -

-
Ha for any

AEL and subgroup H .



QUOTIENT GROUPS THE QUOTIENT GROUP IS ABELIAN IF

THE ORIGINAL GROUP IS ABELIAN
NORMAL SUBGROUP

'

let a be a group ,
and HOG-

Let G be a group .
Then

,

Then HH is also abelian .

a subgroup Hea is called a

Suppose G is abelian .

"

normal subgroup
" of G if

Pioof . If a is abelian
,

then Hab= Hba .

gHg
- '

= cighg' ' : heh }
= H ttgeh.

So (Hatchb) = Hab -- Hba = ( Hb) (Ha)
, implying that

We use the notation
"

Hoa
"

to

4h is also abelian . Be

denote that H is a
normal subgroup

of G .

MULTIPLICATION OF RIGHT COSETS

THE QUOTIENT GROUP IS CYCLIC IF
"
let a be a group .

Then
,
for every

the formula (Ha)lHb) ' H'ab)
THE ORIGINAL GROUP IS CYCLIC

subgroup HEG
,

a well - defined multiplication of right assets

gives H o G .

HOG -

' "
. Let a be a group,

and

ifandonyif Then GIH is also cyclic .
( Hayat b) = Hab for a" right

suppose G is cyclic -

Piof . First , assume

Preof . If G= Cg ? for some GEL , then every element

assets of H in h .

of G is in the form g
"
for some KEI .

let gea
and

HEH be arbitrary .

So
, given any Hae HH

,
we know a=gh for some KEE,

Then clearly
Hh= He .

So ( Hg)CHh)=CHg)CHe
)
,

or H9h= Hose -

and so Ha = Hgh = cycgh) = [ 0cg) ]k= ( Hg)
"
,

where

0 is the quotient homomorphism -

By defa , this implies Cghlcge)
- '
= ghg

-' EH HGEG .

Hence 4H= ( Hg>,
so it is

also cyclic . Da

letting g-
'
=g ,

we see that g-
'

hg c- H also
,

and hence gHg-
' E H and g-

' HSEH ' or " 9^5!

ALL subgroups OF AN ABELIAN GROUP

HOG . #
Thus H=gHg

"
, implying ARE ALSO NORMAL

Conversely , assume HOG .

Ha -_ Ha,
and Hb=Hb, -

' "

let a be an
abelian group -

let a
,
b
,
a , ,

b
,
th be such that

Then all subgroups Hea are
normal .

Then by definition , aa
,

- ' c- H and bbi
' EH

.

Puff . let gea be arbitrary .

Next
,

observe that
Then gHgt= {guy

'
: heh } = Igg- th : HEH} = Ih : htt} ' H ,

abb
,

- '

ai
' = acbbi

' ) ai
'
= Calbb

,

- ' la
- 'Haa,

- t ) .
So H is normal . 18

Since atta
-'
= H and bb

,

-' EH
,

so acbb
,

- 'la- ' c- atta
-'
= H

.

But since we assumed aa
,

- '
EH

, thus ( acbb
,

-'
ta
- 'Kaa,

-1) TH
EXAMPLE of A QUOTIENT GROUP : ④ /I

( by closure of multiplication ), so abb
,
- la

,

- '
c- H .

( ab ) ( b ,
- '
a
,
-1 ) = (ab) Ca ,b,)

-'
c- H

.

'

Consider the group
Q
,
with addition as its binary operation .

But since abb ,
- '
ai

'
=

Then z is a subgroup of ④ under addition
,

and since

it follows that ( Ha) ( Hb) = ( Hai )
( Hb

'
)
,
and "

④ is abelian
,
2 is a normal group

'

multiplication of right coset is well - defined .

Hence the quotient group
④ 17L exists .

QUOTIENT GROUP '

Note the elements of 10/2 are of the form 2+9 ,

"
let u be a group ,

and Hoa .

I where qEQ .

Then the
''

quotient group
"

of a by H

"

deduce each element of ④ 17L
is the set GIH of right wsets

In fact
,
we can further

(Ha)CHb) = Hab -

coset of the form 1+8,
of H under the operation

is uniquely represented by a

'

We can verify that GIH is a group .
where Of Scl .

Pneef . By the above
,

we know the binary

operation on GIH is well -defined .

Then
,

notice that for any
coset Ha

,
Hbd Hc : TORSION

((Ha)CHb)) (Hc)= ( Hab) ( Hc) = Hcab)c = Hacbc)
' "

Cet Ce be a group .

Then G is also a

' ' torsion
"

if
= ( Ha)( Hbc) = ( Ha) ((Hbk Hc ))

,

every element of a has finite order .

so the operation is associative
.

Then the identity of VH is the coset H'- He,

and the inverse of the coset Ha is the coset Ha
- I
,

so 6/1-1 is
indeed a group

. B

QUOTIENT MAPPING
- "

let 6 be a group ,
and Ho G .

"

Then the
' '

quotient mapping
"

is

the function 0 : a → HH by

0cg) = Hg .

'

We can show ¢ is surjective ,

and a group
homomorphism -

Pzof. By deft , Glab) -- Hab ' (HallHb) -- Oca) fcb) ,

so Y is a homomorphism .

Then for any coset Hat GIH ,
0cal - Ha ,

so § is also surjective
. DE



LAGRANGE 'S THEOREM
INDEX 0cg) DIVIDES 161

: Let a be a group,
and H be a -

"
-

at a be a finite group .

Then
,
for any g EG ,

0cg) divides lat .

subgroup of G .

"
" puff . Note He (g> is a subgroup of 4

Then
,
the index of H in G

,

and that IHI = 0cg) .
denoted by IG : HI

,

is equal to the

Since IHI divides 161
,

thus

number of distinct left coset of H

0cg) divides 161 also . Da

in a .

*
this can be finite or infinite-

lay = n ⇒ gn = e
equal to the number of distinct*

la : HI is also -
'

s Let a be a finite group ,
with lat - n .

left coats of H -

Then Ige a , we have gn=e '

LAGRANGE'S THEOREM pewof . let gea be arbitrary .
' '

.

Let u be a finite group , and let H
Then

,
necessarily 0cg) divides n

,
so

be a subgroup of G '
n= ke

,
where k -- 0cg) , and LEE .

Then IG : HI =
II
IHI

-

Hence gn: glee = Cgh)? else,
H in a forms

twof . Since the right closets of as needed . Be

a partition of G
,

let Ha
, , Haz, - - - , Han

EVERY GROUP WITH A PRIME NUMBER
denote the collection of distinct right coset

of H in a .

OF ELEMENTS IS CYCLIC
Then

, by definition , Hai -- G .
. s

. suppose G is a group with 161 =p, where

and Hain Haj -_ 0 if itj - p is a prime number .

Next
, since f : H -7 Hai by Hh)= hai is a

Then for any
non - identity element GEG , G- (9 > i

bijection , consequently 11-11=1 Hail - ie a is cyclic .
exists a non - identity

Hence I Had = I Had = -- - =/ Hani .
PIF. Since p 32 ,

there

161=1 Hqltltlazl -- + that element g EG .

It follows that IHI > I , since 0cg) > l .
= n IHI at H= (g> .

Then

and so n= IG : HI = f÷ . Be But since IHI must divide 161 by Lagrange's Theorem ,

and lat =p only has 1 and p as positive
divisors

,

it follows that IHI =p
-

- 161
,
so a -_H= (g ), showing

that a is cyclic . Be



RINGS
with two

'

A ring is a set R equipped

binary operations ( usually denoted by

addition and multiplication)
that satisfy the

Ha
, b.CER

:

① (atb)tc=
at Cbtc)

following : ② ⇒OER such that a -10=0 -Ia=a

① R is an abelian group
Wrt the binary }- ③ ⇒ eager such that at

C -a) '- C-a) ta=0

operation
' '

t
' '

,
with identity

' '

O
' '

;

④ atb = bta .

② R is a monoid Wrt the binary operation
"

'

"

s }→⑤ (ab) ( = a Cbc)

with identity
"

I
' '

: and
⑥ z fer such that a -1=1 - a -_ a

③ Left & right distributive laws hold ; ie

Harb, CER ,

acbtc) = abtac & Cats)c= act be . } → ⑦ (atb) c = act be

⑧ a Cbtc) = abt ac

'

If multiplication in R is commutative
,

ie ab -_ ba Va
,
be R

,
then we call

R a

"

commutative ring
"

.

PROPERTIES OF RINGS
CHARACTERISTICS AND MULTIPLICATION

UNIQUENESS OF IDENTITIES AND

'

Let R be a ring with char R to .

INVERSES
= 0 the R

' "

let R be an arbitrary ring . Then :

Then K - r=rtrtr
① the additive and multiplicative inverses

K times

n Ik ( ie n divides K )
.

of R are unique ; and ifandonlyif
② for any

AEIR
,

its additive inverse is

PIF- let KEI such that
nlk

,
and let

unique , and usually denoted -a -

RER be arbitrary .
*
these follow from previous theorems .

Then k= Mn for some
MEI -

( mn - l) - r by distributivity .

ADDITIVE IDENTITY IN
MULTIPLICATION

Note K - r = Cmn) - r =

(mn) - I = m - Cn - 1) = m - 0=0 ;
'
'

Let R be a ring ,
with additive identity O -

furthermore
,

n - 1=0
,

so

therefore k - r= O - r = O , as needed . #
Then Hae R

,

a - O = O - a = O -

that K - r=O VREIR
.

Ploof . Since O is the additive identity.
Next

, suppose KEI such

hence 0+0=0 .

In particular, k. 1=0
,

so k must be a multiple

so, by distributivity ,
of the order of 1 in the group

R under addition .

a. O = ACO -10)
= a. Ot a.O .

So necessarily nlk ( see the previous
theorems . ) Dq

Adding
- Ca - o) to both sides yields

o =
a. o ,

as
needed - '

Let R be a ring with char 12=0 -

( The proof that
O'9=0 is similar . )

Then K - r = 0 trek iff
K-- O -

ADDITIVE INVERSES AND

Puff . If 6=0 , then K - r = O - r :O the R .

MULTIPLICATION
conversely , if K - r -- O VRER

,
then K- 1=0

,
'

Let R be a ring , and a,beR be arbitrary.

and since I has infinite order
,
we can

deduce

Then
,

① C -a) b = al-b) =
- Cab) ; and

that this occurs only when k=O . D8

② C -a) C- b)
= ab .

pewof . By distributivity . ENDOMORPHISMS
C-a) bt ab

= C-at a) b = Ob = O
,

' !
Let a be an

abelian group ,
with

and by commutativity of addition ab -1C-a) b -- o also .
I

the group operation
denoted by addition .

This implies C-a) b is the additive inverse of

Then the
"

set of endomorphisms
"

of G
,

ab
,
and so C -a) b = - Cab) .

is the set of all

The proof that al-b) = - Cab)
is similar ' #

denoted by
End (G)

,

- (al-b)) = - C- (ab)) = ab , homomorphisms § : G → G '

Then , note C -a) C -b)
=

group
as ab is the unique additive inverse of - ab . Dae

'

We can define an
addition on End Ca) by

CHARACTERISTIC
(Ot 4)(g) = 0cg) t 4cg) V-8, yeendca) .

' "
' Let R be a ring .

Then
,
the

"characteristic of R
"

,
denoted as

"

char R
"

'
'

; we can also define a multiplication on Endue)

is the order of the multiplicative identity
- by

\ in the group
R under addition , if this

( 041cg) = (0041cg) Vy, 4 c- End CGI.

order is finite .

If it is not ,
we declare char 12=0 .



SUBRINGS RING HOMOMORPHISMS
Let R be a ring .

Then a subset SER
' "

Let R and s be rings. Then
,

is a
' '

subring
" if the

"

t
"

and
"

X
' '

a function 0 : R -75 is a

' '

ring

operations on R restrict to binary operations
homomorphism

" if :

on S
,

and if S is a ring with respect

① (atb) = Oca) t 0lb
) V-a.be R ;

to these restricted operations from
R -

② Cab) = (a) Ocb) Ha,beR ; and

'

We also insist IR = Is ; ie the

③ ( Ip) = Is .

multiplicative identity of the rings R and S

PROPERTIES OF HOMOMORPHISMS
must be the same .

'

Suppose 0 : R, → Rz is a ring homomorphism .

Why ? → they may
not agree .

Then :

eg 12=1/62
,

S -- IED, [23,143} Let re R
,
be arbitrary .

I ,z= El ] , 15 [4]
,
lrtls . ① (o) = Oi

② 0C- r) =
- Ocr) ;

SUBRING TEST
③ ( Kr) = k0Cr) -Vke2 ;

'

Let R be a ring ,
and SER with SFO .

④ ( rn) = (Ocr) ]
"

then ; and

Then S is a subring if and only if :

① Ires , where I
,

is the multiplicative identity for R ; ⑤ Ocr
-n) = [ Ocr)]

"

Inept if r
'' exists .

② a - be s V-a.be S ; and

③ ab es V-a.be S .

Ploof . First, assume SER satisfies the three

conditions above .

Then by ②,

S is a subgroup of R with

respect to addition .

Then by 30
,

S is closed under multiplication ,

and associativity of
''

x
' ' follows from the fact

that it is true for R .

By ① , S has a multiplicative identity Ir ,

and by the uniqueness of the identity of a
monoid

we know that Ip -- Is .

Finally , the distributive laws hold in S because

they also hold in R .

Hence S must be a ring , and so is a subring of R .

#

Conversely , assume S is a subring of R .

Then since S is a subgroup of R Wrt
"

t
' '

,

it follows from the Subgroup Test that a-bes tabes.

Similarly , since S is closed under
the multiplication on R ,

we know abt S Ha
,
bes by definition -

Finally, since by definition 1,2=15 ES, we can see

all three conditions are satisfied . 19

CENTRE OF A RING

'

Let R be a ring .
Then the

' '

centre
"

of R
,

denoted by
2-CR) , is defined

to be

2- ( R) = d
,
ZER : Zr=rz ther } .

'

We can prove
ZCR) is also a ring .

Puff. Note 742170 ,

as I EZCR) .

( so ① in the Subring Test is satisfied. )

Then
,
for any

RER and a,b C- ZCR) :

(a -b) r = (at C
-b)) r = art C-b) r = art - Cbr)

= rat - Crb) = rat re-b) = rca-b) ,

so ca- b) C- ZCR) , satisfying ②
in the test .

Lastly , Cab) r = actor) = acrb) = Car)b= ( ralb
= rcab)

,

so abe ZCR) also
, satisfying ③

in the test .

Hence 742 ) must be a ring .

Note if R is commutative,

then ZCR) = R .



IDEALS AND QUOTIENT RINGS
QUOTIENT RING

RELATIONSHIP BETWEEN 0 : A-761 let I be

'

; let R be a ring ,
and

AND KER 0 an ideal of
R '

RII can be

Then the set of right
wsets

'

Let 01 : a -76 ,
be a group homomorphism .

given the structure of a ring ,
with

Then Ker of is a
normal subgroup of G .

( Ita) + ( Itb)
= It Catto) ; and

i) addition given by
= It ab ,

Puff . let K= kerf.
ii ) multiplication given by ( Ita) ( Itb)

Then we know k is a subgroup of a .

for any
Ita

,

Itb C- RII .
let gea be arbitrary .

Pwef . First
,

since I is an additive subgroup of R ,

suppose h -- gkg
- I for some KEK .

and R is abelian ( under t) ,
then

Observe that since

by definition RII
is well defined under

0cm = 0cg kg
-' 1=0470161095

'

= 0cg ) ( e) 0cg)
' '

addition .

Then
, suppose

Ia
'

,
b' ER such that Ita -

- Ita'

= e
,

it follows that he Ker 0=4 , and so gkg
-'
Ek .

and It b= It
b
'

.

it shows
that

a
- a

'
C- I

and b - b
'
C- I .

If we let g-
I take the place of g '

This implies

g-
'

Kgek tfgea , so KE 9kg
"

. Subsequently, note that
= ( a - al)b+ a' ( b - b ' )

.

ab - a' b
'
= ab - a' b +

a' b - a' b
'

It follows that K=gKg
- l
,

and since this

and
I absorbs multiplication,

K is normal in G .

holds HGEG, we thus have that since a -a' C- I ,

necessarily ca -a
'

) b c- I . Similarly , since b - b' c- I ,

'

Let H be a normal subgroup of G .

we must have that a' ( b - b ' ) c- I .

Then there exists a group homomorphism i

addition
,
( a -a

' )b + a' ( b-b
') c- I

,

Finally, since I is closed under

0 :b -76 , such that H= Ker 0 .

and so ab - a' b
'
C- I .

proving
that multiplication

Puff . let a
,
-

- UH , and consider
the quotient

This shows that It
ab = It a' b

'

.

homomorphism g : a → at
H given by

is well -defined .
qcg) = Hg ttgea . wrt multiplication ,

certainly , Itt
is an identity
It a - I = Ita V- (Ita ) ERII .

Observe that GE Ker q if and only if Hg = He ,
since ( Ita) ( Itt ) =

which ours if and only if get 't H' RII is associative ,
Also, multiplication in

which occurs if and only if GEH.

since

( ( Itak Itb)
) ( Itc)

= (Itab) (Itc )
= (It @b) c)

Hence H -- Ker q ,
and we are done . BE

= (It a Cbc)) = ( Ita) ( Itbc) = ( Ita) (( Itb)CItcD

KERNEL OF ABELIAN GROUPS
for any

Ita
,
Itb

,
Itc C- RII .

and 0 : R-35
also satisfy the distributive laws .

'

'

Let R and S be rings ,
we can similarly show RI 't

be a ring homomorphism .

RELATIONSHIP BETWEEN 0 : R -712 ,
Then, the

' ' kernel of 0
"

,
denoted by

' ' Ker 0
"

,

is defined to be the set
AND KER 0

'
'

Let 0 : R-75 be a ring homomorphism
.

Ker of = derek
: Ocr) = Os } .

Then Ker 0 is an ideal of
R .

Note that by construction
,

Ker 0 is an

( Proof in previous
section )

additive subgroup of R .

"

Let I be an
ideal of R .

Then there exists

¢ : R -712 ,
such that

IDEAL OF
A RING

a ring homomorphism
' "

Let R be a ring .
Then

,
a

\

' '

ideal Ker D= I -

and consider the quotient mapping
subset IER is called an

Penof - let 121=12/1 ,

q : R -7 R , by qca)
= Ita taek .

of R
"

if
since RII is a ring .

① I is a subgroup of the additive

Then q
is a ring homomorphism

if and only if qca) -
Ita -

- Ito
,

group
R ; and

But since a c- Ker q
② I

"aimplication
;

which holds if and only if a C-I
,

we have
that ar

,
ra c- I .

ie FREI , at R , I = Ker q ,
and we we

done. Dk

we must have that

'

z Example : the
' '

zero ideal
"

of R ; do} .

First , note Io} is the trivial subgroup of R

under addition .

Then , for any AER
,

certainly a - 0=0 - a = Of Io},

so 40} absorbs multiplication as
well .

So do } is an ideal of R .

PRINCIPAL IDEAL GENERATED BY a

'

'

II: Let R be a commutative ring , and AER be arbitrary .

Then the
' '

principal ideal generated by a
' '

is the set

AR = Ra = ISER : Star for some RER } .



Chapter 5:
Elementary Number Theory
INTEGRAL DOMAINS

GAUSSIAN INTEGERS
ZERO DIVISOR
:
Let R be a commutative ring . .

The ring of
"

Gaussian integers
"

,

denoted by Ili],

Then
,
an element at R is called a

is defined to be the set

*
"

zero divisor
" if there exists a BER

'

zqiy = Ia+ bi : a. be I } i is such that

b. to such that ab - O ' c' 2=-1 .

with addition given by
INTEGRAL DOMAIN

(at bi ) t (
ctdi ) = ( atc ) t Cbtd)i

'
'

Let R be a commutative ring .
"
where Rt 403 . and multiplication given by

"
' ' '

if 0

(at bi) (ctdi
) = (ac - bot) + (

adt bc) i .

Then R is an integral domain

is the only zero divisor ;

NORM
ie if ab -- O

,

then either a -0
or b -- O .

' "
Let at bi

e Ici ] be arbitrary .
Then

,

- '

z
Example : the ring K .

the
"
norm

"

of atbi
,

denoted by

CANCELLATION PROPERTY OF AN
Ncatbi) , to be equal

to

INTEGRAL DOMAIN
Ncatbi ) = a't b?

'

Let R be a commutative ring .

Then
,
we can show that Rt fo} is

PROPERTIES OF INTEGRAL DOMAINS
an integral domain ifanyf

and ato, then be.

CHAR R IS ZERO OR PRIME
Va,b , CER ,

if ab=ac

' "

Let R be an integral domain .

P_Nof . First , suppose
R is an integral

domain .

char R =p, where
p
is prime .

ab=ac and ato .
Then either char 12=0 or

let a,b,ceR such that

Puff . Suppose charRto and char R is not prime .

Then ab- ac :O , so
a (b -c) =O .

Then either char 12=1 or char R is composite .
domain

,
and afo

But since R is an integral
If char 12=1 ,

then 12=40} , and so cannot

by assumption , we must have that b - c -- O,
be an integral domain

.

and so b=c .

then char R= ab, where
" " If char R is composite ,

conversely , assume the cancellation property holds .

Ica, ban .
Then r= a - Ir and s=b - Ip are

let a,bER such that ab=O .

non- zero
,

but rs = (ab ) - IR = O
,

which is a

If a=0 the claim follows trivially, so assume ato .

contradiction .
Then ab=O= a - O and ato

,
so necessarily b=O

.
D8

Hence necessarily if R is an integral domain
,

FIELD then char -- O or charr is prime - Ba

' "
Let F be a ring .

Then
,

F

"

is a

' '

field
"

if EVERY FINITE INTEGRAL DOMAIN IS

① it is commutative; and

A FIELD
② every

non - zero
element of F has

' "
Let R be a finite integral domain ,

a multiplicative inverse in F
.

Then R is also a field .

'

In other words
,
for each AEF

,

Pweof . let n=lRl , where
NEN -

Ia
-let such that aa

"
= I .

Let aer be arbitrary ,
with a # O -

let the multiplication map 0:12 -712 by

Examples : IQ and R .

Ocr) -- ar trek .

EVERY SUBRING OF A FIELD IS
Note 0 is injective

: if 0/61=461,
then

arias
,
and by the

cancellation property
AN INTEGRAL

DOMAIN
R
* this also proves

. ,

yet p be a field .
Then every subring

F is an necessarily r=s .

¢ must also be surjective .
domain of F. integral domain ! Then

,
since R is finite,

of F is an integral
the same

By infectivity , 101cal = n , and since OCR) ER and 1121=7

Pioof. Since multiplication is defined

multiplication in F is

necessarily 12=0/42) -
as in F,

and
R is a commutative there exists a BER such that 0(b) =/ ,

commutative , we
know subsequently , by sujectiity,

ring . which says that ab=ba Implicative inverse b.ER
,
and so

such that ab=O in R .

Thus each AER has a

Then
, suppose

we have a,beR

Necessarily , this equation also holds in F.

R must be a field- By

Next , if ato,
then a

- t exists in F by definition ,

and so a-lab = b = a-
'
. O = O

,
and so

b -- O -

This proves if ab -- O in R ,
then a=o or b -- O ,

and

so R is an integral domain . Dk



DIVISIBILITY
arb c⇒a=ub

'

Let R be an integral
domain ,

' "
' Let R be an integral

domain .

and let a,beR be arbitrary -

Then
, given any

a. BER ,

Then
,
we say

"

a divides b
" if

we have a~b ifandonlyif
there exists a

CER such that b=ac ,

a=ub
,

where uER* .

and write al b .

Pneof . First, suppose
ants in R .

*
we could write a Tb if

Ther alls and bla
,

so there exists

a does not divide b .

b=ak and a --
be

.

THE DIVISIBILITY
RELATION beer such that

b=ak= ( be) k =
blek) .

IS REFLEXIVE Hence

-

Let R be an integral
domain .

If 6=0
,
then as 0.1=0 ,

and so a=b=tb
,

Then ala Va ER .
where I C- R* .

Puff . This follows from
the fact that

On the other hand , ifbto,
then b - I = b -Clk) ,

a =L - a V-ac-R.iq

and by the cancellation property necessarily
lk=l .

THE DIVISIBILITY
RELATION

So ee Rt, and the proof follows
.

IS TRANSITIVE
a=ub. for some

uER* .
. Let R be an integral

domain .

Conversely , suppose
Then Ha, b, CER ,

if alb and b/c ,
Then bla follows immediately .

necessarily alc .

But note u

- la = u
-tub = b

,
and so a/b also '

Pewof . Since alb and b/c ,
thus

[ = be for some K
,
LER .

Thus a ~b , completing
the proof . TB

ak=b and

Thus c= be

= (akll

: c = ache) .

Since (ke) ER ,

this tells us ale , so we

are done .

alb
,
ble ⇒ alcbxtcy)

' "
- Let R be an integral

domain .

Then Ha
,
b
,
CER

,
if alb and ale ,

necessarily alcbxtcy) thx,yeR .

Pewof - since alb and ale ,

so ak - b and al=c for some k,eeR.

This for any x. YER ,

bxtcy = Caklxt Cally

= ackxtly)
and so akbxtcy ) , as required - B

ASSOCIATE

we can define an equivalence relation
' '

n

' '

on any ring
R by stating that

an b if alb and bla .

Why ?
→ A- 403 .

'

We say
a and b are

' '

associate
"

in R if a - b .

UNIT OF A RING

'

'

Let R be a ring.
Then

,
an element

RER is called a

"

unit
' '

of R

if r has a multiplicative inverse

in R .

'

We denote R* to be the set of

all units of R .



DIVISION WITH REMAINDER

DIVISION WITH REMAINDER IN 7L[i]
DIVISION WITH REMINDER IN Z

'Ii
'

: Let 4. BE Iti ], with pto .

'

Let a
,

be 7L with b > O .

"

Then there exist unique integers 9 and "
Then there exists 8

,
8 E Ili ] such that

with Os re b
,

such that a=bE+r '
y =py+ g

,

with Of NCS ) ( Nlp) -

Pref . First
,
assume

a > O '

pqof . Let q=atbi and p=ctdi , for some

at S = Ine N : n=a
- bot , 9£23 .

a,b,c , d EI , with Cto and d±° .

Note sty , since a=a- bio) , so
AES .

least element r .
Then q=qIba÷=IIi - iii.Thus , by

WOP, S has a

=

( act bd) +
Cbc- ad) i

Then by construction r=a
-bq, so a=bqtr.

-
(
Z t d2

Moreover
,

since both
= rt si ,

i ) r > O '
and

then r-bs.co
,
and so with r= acjbbd e Q and 5- KITT ' Q '

ii ) rcb ;
since if r> b ,

Im - rt Etz and In -Stetz .

r -b= a
-bq- b

-

- a -blqtt) , implying r
-BES '

Subsequently, choose mine 2 such that

contradicting the minimality of r ,
let 8= mtni E Ici]

and 8=4-138.

and we are done . #

we get that
0Er< bi Note gez[i ] , as

"

t
"

and
"

X
' '

are closed in the ring Hi ] .

Conversely , if a co
,

then
- a> 0

,
so by the above

Then
, certainly 4=138+8 .

there exists go.ro c- 2 such that -a = bqotro,

Moreover
,
note that

where OE ro < b -

g = y - pr = PCF) - 138

Then , = pcrtsi ) - pcmtni
)

① if 8=0,
then a=bC-go) , so q=

- go and r=o

=p (Cr-m
) t Cs -Ni ) ,

satisfy the theorem's conditions; and

so NCS ) = 1812 = Ipccr-m) + Cs-n) 12

② if roto, then a= BC-go) - ro
= bl-Eo-ht Cb- ro )

,

= Ipf Ccr-mitts
-nil

re b -ro satisfy the conditions

and so q=
-

go- I and
= Ncp) (Cr

-m)'t Cs-nM .

of the theorem . # But since Ir-ml Etz and
Is -htt t '

qr
exist taek ,

consequently Cr-m)
' EI

,
and Cs -nifty,

Hence
,
we have shown

and so we only need to prove uniqueness . and so Cr -m)'t Cs- n)
'

t I .

NCS) f Ncp) - I C Ncp) , proving the

a= bqltr' and Oerkb . Hence

Suppose 7- q
'

, r' c- I such that

other condition of the theorem - B

Then b.qtr = bq
' tr

'

,
and so

DIVISION ALGORITHM & DIVISOR FUNCTION
r - r

'
= bcq - q

' ) .

If q=q
'

, necessarily r=r
'

, completing
the uniqueness proof .

"
s Let R be an integral

domain . Then
,

I
'
'

algorithm
"

we say
R has a

division

absolute values of both sides :

If qtq
'

,
then by taking

if there exists a function d : RYO}→ N

Ir
'
- rklbllq- q't 3 b .

such that Ha, be R
with bto

,
there

this is impossible , so

exist g. re
R such that a=bqtr,

But since rcb and rkb
,

or r=O .

we must get
that 9=9

'

,
and so r=r !

with der) C
dcb) ,

are unique -

DU
d the

"

divisor

proving q and r -

In this case
,
we call

'

Note that function
"

of R .

① q is known as the
"

quotient
' '

of the division ; and

② r is known as the
' '

remainder
' '

-of the division .

RELATION BETWEEN ~ AND GCDS

1403 be

GREATEST COMMON
DIVISOR

' "
' Let R be an integral domain

,

and a
,
be R

'

Let R be an integral
domain

,

and a,bER

arbitrary .
Then

,

I with ato and
b # ° -

both greatest common divisors

be arbitrary , ① If d
,
and dz are

b
,

then d,
- dz ;

and

DER is called a

Then
,
an

element of a and

② If d
,

is a greatest common
divisor of a and b

"

greatest common divisor
"

,

or

' '

god
"

,
of

and dz ER is such that
dz red , ,

then

a and b if
a god of a

and b .

① d la and dlb :
and necessarily d2 is

Then
,
assume

d
,

is a god of a and b

② If ee R is another common divisor of a and b
'

pµf . First
, suppose

d
,
and dz are

both Fds
and dz~d , .

so that e la and elb , then necessarily eld '

of a and b . So dzld ,
and dildz -

d. lb ,
the transitivity

common
divisor of a

sz Note the greatest common divisor of Then since d
,
is a But since d. la and

and b
,
and dz is the greatest "

mm"

y divisibility tells us that data and dub,

a and b may
not be unique

!

b
,

necessarily d
, ldz .

a and b .
divisor of a and

Symmetrically , since d
,
is a god of a

and b So dz is a common divisor of

and dz is a common divisor of a and b
,

Furthermore
, for any common divisor e of a

and b
, we know eld, , since d

,
is

we must also get that dzldl ' the god of a and b -

consequently since dildz and dzldi . So dl~d2 '
But since d,1dz , transitivity y

divisibility

pwning ① -

once again yields that eldz , proving
that

dz is indeed a god of a and b
,

proving ② . B



THE EUCLIDEAN ALGORITHM
PROCEDURE

'
"
.

Let R be an integral domain with

\ '
"
s Let R be an integral domain

a division algorithm ,
and a,beR be

with a division algorithm ,

arbitrary . and suppose
D denotes the

the Euclidean algorithm
divisor function

in this case .

Then
,

we can
use

a
and b .

Then
, given some

a
,
be R with a # OR

to efficiently find the god of

and b. top , we can calculate the

'

In other words ,
the Euclidean algorithm

god of a and b as follows :

shows that given any a. be 121403 ,

① we first carry
out a division with

gcdca, b) always exists .
remainder to get that

FUNDAMENTAL IDEA a = bqot ri '

'
'
'

The fundamental idea that makes the
where go , r,

e R and either 4=0 or

Euclidean algorithm
work is as follows :

Dcr, ) c Dcb) .

Let R be an integral domains and suppose it implies bla , and

② Then
,
if 7=0,

there exist a
,
b
, q, re R

such that a -_ bqtr .

consequently that b=gcdCa, b) .
is a god of a and b

Then
,
an element DER

③ otherwise , if r
,
# o

,
then we can use the

a god of b and r ;

ifandf it is
lemma to the left to deduce that

ie god ( a ,
b ) ~ gcdcbir) - god (a. b)

n gcdlb, ri ) .

④ So
,
we can carry

out another division

1¥. First
, suppose

d is a god of a and b .

with remainder of b by r,
to get

This implies dla & dlb .

that

so d) ( a. It b.C-q) ) , telling us that dlr
, b = r, q,

t rz ,

rz=O or Dcrz) c Dcr, ) .
divisor of b and r .

where q, ,rz
ER and either

so d is a common

divisor of band r . , implying
that

Then
, suppose

e is a
common

⑤ Again , if rz=o, then r
,
= gcdlb' r"

Thus elb and elr -
r
, =gcd( a. b) as well .

or ela ,
Hence et b -Etr

- l
'

divisor of a and b .
⑥ otherwise

,

we can infer gcdcb, ri ) ~ god ( r' ' r2) ,

showing
that e is a

common

and so we are reduced to calculate a

But since d is a god of a and b
,
it follows

god of r, and rz .

that necessarily eld
,

and so d is also aged

⑦ we can continue this process
to obtain a succession

of b and r - #

of divisions with remainder :

used to
prove

the backward

A similar proof can be
last non-zero remainder obtained .

a= b.got ri where rn is the

argument . Da we must eventually
b. = ME, + rz Then

,
since Dcb) > Dlrl ) >

' '
'

i

as this is a strictly
r
,
= rzEztr3

get a remainder of O
'

'

' natural numbers -

'

decreasing sequence of

rn -2
= rn -19ns,

t rn

rn- I
= rnqn t

O
,

⑧ But since gcdca, b )
~ god ( b'

r
'
) ~ -- ' Ngcdcrny , rn) , and rnlrn- , ,

we can consequently infer rn= gcdcrn , rn -1 ) ,
and so

rn -_ gcdca, b) also .

EXAMPLE : god ( 1009, 33)
' "

- we can use the Euclidean algorithm

to find the god of 1009 and 33 .

First, we perform
divisions

with remainder :

1009 = 33 . 30 +19

33 = 19 - I t 14

19 = 14 - I +5

14 = 5-2+4

5 = 4.1+1

4 = I - 4 -10

So the 1st non -zero
remainder is 1

,

implying
I = gcdcioo9,33) .



THE EXTENDED EUCLIDEAN ALGORITHM
' "

The Euclidean algorithm
can be used to

find elements x
, y

C- R such that

Akt by =D , where d = gcdca, b) .

PROCEDURE
' "

- we can accomplish the above by the

following :

① Suppose after running the Euclidean algorithm

on a and b
,

we generate
divisions

with

remainder
*

a = blot ri we leave out

b = ME,
t R2 the last step .

r
,
= rzqz t

r
}

-

:

rn-2
= rn-19ns,

t rn

② we now reverse the order of the equations,

and isolate the remainder in each one :

rn = rn -z - rn- i En
- I

rn - ,
= rn -3

- rn -2 En -z

:
<

rz = b - r, 9 ,

r
,
= a - bqo .

③ Then
,
we can

' ' back-substitute
"

the below

equations into the above one
,

which will

eventually terminate when we have expressed

gcdca, b) = rn = axtby for some x. YER ,

which is what we
wanted to do .

EXAMPLE : 1009×-1 33g
= I

' "

we can use
the Extended Euclidean

algorithm
to find integer

solutions

to the equation 1009×-1 33g = I .

First
,
we reverse and solve for each

non- ten remainder the equations
we

obtained when applying the
Euclidean

Algorithm :

I = 5 - 4 - I - ①

4 = 14 - 5-2 - ②

5 = 19 - 14 - I -③

14 = 33 - 19 - l
- ④

19 = 1009 - 33.30 - ③ .

Then
,

observe if we substitute ② into ①
,

we get that

I = 5 - ( 14 - 5. 2) . I = 5 - 3 - 14 - I .

If we substitute ③ into this new equation , we

subsequently get that

I = 5.3 - 14 - I = ( 19-14-11.3 - 14 - I = 19.3 - 14.4 .

We can keep
''

back - substituting
" like this ,

eventually arriving at the conclusion that

I = 1009 - 7 - 33.214
,

and so 1009×+334=1 has a solution X=7 and
y= -ay

over 7L .



LINEAR DIOPHANTINE EQUATIONS
' '

: suppose R is an integral domain with

THE GENERAL SOLUTION OF A

LINEAR DIOPHANTINE EQUATION
a division algorithm

.

Diophantine equation ( in with a

Then ,
a linear - "

. Let R be an integral domain

of the

z variables) is any equation division algorithm, and a. b. CER
be

form axtbytc , such that ato & b # O -

be such that dlc ,

×,y
are the solutions to

Let d=gcdCa,b)
where a

,
b
,
CER and b= dbo for some

and write a -_ dao and

the equation .

IF A LINEAR DIOPHANTINE EQUATION HAS ao, BOER .

Then
,

the complete set of solutions to the

A SOLUTION, THEN gcdca, b) I C
equation where x.YER,

domain with a axtby =c ,
' "

Let R be an integral
and let a

,
b
,
c C- R

division algorithm, is given by
Then

,
if there exists

be arbitrary . ( × , y
) = (xotkbo , Yo

- Kao )
'

equation axtby =c ,
a solution to the and ( Xo, yo) is a

where KER is arbitrary ,
with x.YER ,

then gcdca, b) Ic
.

particular solution to axtby=c .

is a solution to axtby - c,
Puff. let d=gcdCa,b) .

Puff . By assumption , lxoiyo)

Then dla and
dlb , implying that

implying that axotbyo -_ c .

-①

dlcaxtby)
-

- C .

solution to the equation,
So dlc ,

and we are
done . Dq

let (x
, ,y , )

be another

so that ax
,
+ by , = c .
-②

IF gcdca, b) 1C ,
axtby=c

Subtracting ① from ② yields that

HAS A SOLUTION
acx

,
-Xo) t bcy , - yo) =

O
,

' " Let R be an integral domain

and making the substns a= dao and b -- dbo gives us

with a division algorithm ,
and

( dao ) (x , - Xo ) t (
dbo) Cy , - yo ) = O .

a. b, CER
be arbitrary ,

with

ato and
b. to .

Rearranging this gets us that aocx, - Xo) =
- body , -To) .

Then
,

if gcdca, b)
Ic
,

the equation

But since gcdlaoibo) Nl ,
axtby -_ c

has a solution
with x.YER .

Hence bot aolx , - Xo) .

we can infer that bot ( x , - Xo) , and so X ,
-Xo=kbo

Puff. Let d=gcd(a,b) .
Then

,

the Euclidean

algorithm tells us that 7×0.90 ER for some KER . ( This implies X
,
I Xotkbo ) .

Such that axotbyo =D .

So aockbo ) = - body , - yo ) ,

Since dlc, it follows
that IKER

and thus Kao = - Cy , -yo ) ; then
, if we solve for y , .

Such that c=
led
,

and so

( = Kd = kcaxotbyo) = alkxo) + BUT" ' we get that
y ,
= yo - Kao

.

so that axtby=c has a solution

Thus if ( x , ,y , ) is a solution to the equation , then
x=kXo and y= Kyo . KJ

( X , , y ,) = ( Xothbo , yo - Kao
) . #

alba & I - gcdca, b) ⇒
alc

conversely , note if ×
,
- Xothbo and y ,=yo - Kao ,

then

"

suppose R is an integral
domain with

and let a. b.CER
ax

,
+ by , =

acxothbo) t bcyo - kao )
a division algorithm ,

be arbitrary . = ( axotbyo) t kcabo - bao )

Then
,
if both al bc and I ngcdla, b),

= C t k ( ( dao ) bo - Cdbo)ao)

necessarily alc .

= c t O

Puff . Since albc
,
there must exist a KER

= C
,

such that ak=bc -

solution to the equation. DM
and so Lxiiy ,) is a

Moreover
,

since I is a god of a and b
,

THE GENERAL SOLUTION
we wow there must exist x.YER such that

EXAMPLE : FINDING
axtby =L .

Thus
, if we multiply both sides by c

,
we get TO 1009×-1 33g = 5

' "

we can use the formula given
above to find

acxt bcy=c
all the solutions to 1009×+33=5

( in Z ) .

But since beak, so

First
, by running the Euclidean algorithm

on the ega ,
acxtaky =c

and that
⇒ accxtky) =L , we get that gcdCl009 , 331=1

proving alc
,

as required . B
ioogcf) t 33C -214)

=/ .

Then
,

since gcdcioo9,331/5,
the above eye

has a solution .

d=gcd(a, b) ⇒ a -- dao , b=dbo

Subsequently , multiplying both sides by 5 yields that

⇒ god Cao , bo)
~ I

1009135) t 33C- 10701=5,

has the particular
solution ( Xoiyo) = ( 35,

-1070) .

'

Let R be an integral
domain with

and so our equation
and let a. be 12140}

a division algorithm '

To
get the general

solution , note ao=a= 1009 & bo=b= 33,

be arbitrary -

so that a dao and b -- dbo
in this case

,
and so the

suppose
d -- gcdlaib) , because the god is 1

general solution of this ega
is

for some ao ,
bot R .

Then gcdcao,
bo ) ~

I necessarily .
(Ky ) = ( 35 -133k

,
-1070 - 1009k ) ,

Puff . First, we know
that IX.yer such that

axtby =D ' where he 7L is arbitrary .

So (daox) + (dboy
) =D

and cancelling
out the alto yields

that aoxtboy =/ ,

which shows that gcdcao, bo) / I ,
and so gcdlao, bot

- l

( as I I gcdcaoibo ) holds trivially . ) Dk



MULTIPLICATIVE INVERSES IN 74mL
'

We can use linear Diophantine equations

to calculate the multiplicative inverse of an

element in 74hL , if it exists .

'

In particular, we can show [a]E21n2

has a multiplicative inverse if axtny =/

has a solution .

Puff. observe [a] has a multiplicative
inverse if and only if there exists a

[×]E2/n2 such that [a) EX ]=
[ IT .

This is equivalent to the assertion that tax] -113 ,

or that ax I 1 (mod n ) .

In turn
,
this is the same as saying nlcax- t );

ie ny
= I - ax for some ye 7L

,
or in other words

whether axtny
=/ has a solution . Da

'

Hence
,
this is only possible if gcdca, n ) =L .

'

Note if n =p, where p
is prime , then gcdca.pl =/ HEAIE Ip# Ito]

,

and so 2/102 is a field .



POLYNOMIALS OVER A FIELD
F-Ex] HAS A DIVISION ALGORITHM

' '

Let F be a field .
Then

,
we

\ field . Then
,
the

define the set of
"

polynomials with
'

'

Let F be an arbitrary
admits a division

coefficients in F
"

,

denoted by FEX]
,

integral domain FEM

algorithm with divisor function degc . ) ;
by

ie for any polynomials f.ge
FED with gto,

F- [x] = Yao -19×+92×2-1 . . . + anxn : n 30
,
aief Hi } .

there exist g. re
FEX] such that f-gqtr,

-

We can turn F- Ex] into a commutating :
and either r=o or degcrlcdeglg) -

given a f- = ??oaixi and g= obixi, we can

pref . let s -_ If-gq : get-43}.

define an addition and multiplication by
If Oes, then there exists a qe FIX] such

maxcm
, n)

f- + g = E Cait bi ) Xi that f=gq ,
and we are done .

i. o

and otherwise
,
let reslico} be arbitrary .

fg = Cixi
,

with ci= ajbij for each i . By construction
,
r= f -gq for some 2EFE×],

and so f- = gqtr as needed . #

DEGREE
Next, suppose degcr) 3 degcg) ,

' !
Let F- Ex] be a set of polynomials

and let r : anxn t an -, x
"-'
t . . . and g= bmxmtbmyxm

-'
t .- .
,

with coefficients in some field F .

where bmto since gto, and n > m .

Let FEFCX] be arbitrary .

Then
,
the

' '

degree
"

of f , denoted by degcf) , Then
, since bmto and F is a field , bin

'
must exist.

i such that ai to .

is the largest index let r
,
= r - anbm

-'
x

"-

mg

degcftg) f Max (deg
(f)
, degcg)) = Cami + an,x

"

-1 . . . ) - (anxntanbmbm.in
-'
t - - - l

-

'

s
Let F be an arbitrary field , and figt FED = (an, - anbm-tb.me ,

) x
""
t - - i

,

be arbitrary.
Then

, if degcftg) to ,

so that degcr,) c degcr
)
.

then degcftg) f Max ( degcfl , degcg)) .
""min'

r,=r
- anbm-ixn-mg-cf-qgl-anb.mx

"-

mg = f - ( qtanbmtxn
-mtg ,

However
,

Puff . By definition , ftg=¥o (aitbilxi .
So r

,
ES

, contradicting our choice of r as an element of S of smallest

So all coefficients of powers of x after

ma×(m,n) are equal to 0
,

so if f- +9=19
degree .

verifying
that a decomposition

then degcftg) E maxcm.nl = maxldegcf! des'S)) .
Therefore degcr) c deglg) after all

,

f- =gqtr
where r=o or degcrlcdegcg

) does exist.

degcfg) = deg Cf) t degcg
)

' " let F be an arbitrary field, and fig EFCX]
EVALUATION

be arbitrary .
' "

Let F be an arbitrary field , and

Then deg Cfg)
= degcf) t degcg) .

mtn

f e f[×] be arbitrary .

Phoof . By deft , fg = Io Cixi ; hence all

Then ,
the

' 'evaluation of f
' ' at c

,

coefficients of powers of × after men are

where CEF
,

is defined
to be

equal to 0
, implying degcfg) s degcfltdegcg) .

f-(c) = and t an-ich
-t

. . .
tao .

Next
,

observe that

Cmtn = ajbmtny.
= aobmtntaibmtn.it - - i + ambn.tt - i . + am+nbo . ROOT

'

'

Let F be an arbitrary field, and

Then
,

since aj
-

- o Hj > m, so all terms after amba in the

fee -1×3 be arbitrary .

I 1

Sum above are equal to O -

i .

Then a
CEF is a root of f

likewise , since bm+ny.
:O when jam,

all terms before ambn
if fcc) = O .

in the sum above are equal to O -

EVALUATION HOMOMORPHISM
Hence omen = ambn , and since am#

O & bn# O ,

-

'
'

. Let F be a field . Then
,

the
' '

evaluation

the fact that F is an integral domain tells us

I

homomorphism
' '

of F at some CER is defined

that amtsn-cm.INFO -

prove
that degcfg) = mtn-degcfltdeglgl.pe

to be the mapping ok : F[x] → F

given by Odf) = fcc) Hfe F.
This is sufficient to

"

Note that ok is a ring homomorphism
.

F-EX] IS AN INTEGRAL DOMAIN

" "
let F be an arbitrary field . We can

show that F-Ex] must be an integral

domain .

Puff. . Observe if f.ge FIX] ) do},

then degcf) and degcg) exist,

and by the above degcfg) = degcfltdeglg
)
.

So fgto ; combined with the fact that

F-Ex] is a commutative ring , this is

sufficient to show that Fcx ) is an

integral
domain . Dm



THE FACTOR THEOREM PRIMITIVE ROOTS MODULO P
'

'

Let F be a field , and CEF be arbitrary .
g. C- 6, 0cg) IS MAXIMAL ⇒ hold f-heh

Then c is a
root of fifandonlyifF[
x ) ; ie Ker ok = FCX] (x -c) .

!
Let a be a finite abelian group ,

and

( x-c) If in
suppose yea is such that olg) is maximal .

Puff . First
,
assume Cx - c) If - Then, if 0cg) = k , then hk=e the G -

Then
, by definition , there exists some 9tF[×] (proof in Ag)

such that f=(x-c) q .

F-
*
IS CYCLIC ( F IS A FINITE FIELD)

Note cfccx -c) = C - c = 0
; thus,

f- (c) = Odf) = Okcx-c) #Cq) = O - 0441=0, showing
'

Let F be a finite field. Then the

that c is a root of f - group E* of units of F is Eydie -

conversely , suppose c is a root of f .
pzof . since Ft is a finite abelian group, we can

Applying division with remainder of f by (×" )
'

choose an element ceF* that has maximal order
-

we know there necessarily exists g. REFEX
] such that

Let this order be k .

f- = ( x - c)qtr, Then by the above lemma
,

ak= I V-aEF*
.

where r
-

- O or degcr) c degli
-c) =L .

In particular, the polynomial Xk- I C- FIX] has at

Either way , this guarantees r is a constant polynomial,
least IF'M distinct roots , so I # IS K .

in the form r - ro for some ro EF .

But we also know xh - I can only contain

So
, applying Oc to the ega yields

that

at most IFKI distinct roots
,

so KE IF
# t

.

O = fcc) = Okcf) = Ok ((x-c) qtr)

Thus k=lF*l , and so there exists an element

= 0dg) # (x-c) t ro

= 0 . Ok Cx -c) tro of ft having
order IF

* l -

i . O = ro '
Hence 11=1×1 is cyclic,

which we wanted to prove -

Da

showing that f- = (x-dq , so Cx-c) If .

Thus fcc,=o exactly when f- is multiple of ""t'

( Ifp 2)
*

IS CYCLIC (p IS A PRIME)
implying that Ker ok = F-(xxx-c) . Da

f HAS AT MOST DEG(f) DISTINCT
'

For any prime P , we can show that

the group ( 74pA
"

is cyclic .
ROOTS IN F ( IF f- FO )

Phoof . Note for any prime p,
the ring 247L

'

Let F be a field . Then
, any

polynomial f- EFEXTIIO} has utmost is a finite field
.

So
, by the above theorem

, necessarily we must get

degIf distinct roots in F .

preof . We prove
this by induction

.

that 24,7L is cyclic . Dq

First
, if AegCH=0, then f-fo ,

where foeflio}.

Hence foto feet
, showing f has no roots in F

,

establishing our first base case .

Similarly, if deg4-1=1 , then f -- axtb for some a. be F,

with a to .

Then note fcc) -- o iff actb
,

iff ace - b , iff c
-

-
- a
- ' b ;

so f has exactly one root in F, establishing our second

base case .

Next, suppose degcf) -- htt for some n 71 , ne It,
and

assume all polynomials of degree Kanti have at

most k roots in F .

If f- has no roots in F the result is trivially

true
,

so assume CEF is a root of f.

By the Factor Theorem
,

thus f- Cx-c) fn for some

f-NEF .

Taking degrees of both sides yields that degcfn)=n .

Then
,

note Fae F, fca) -0 if and only if Ca -c)fnla) -O,

which holds if and only if a=c or fnla) -
- o .

But fnla)=O has at most n distinct values for at
most

n distinct values of AEF;

hence
, f-Ca) -0 for at most htt distinct values of a .

The claim follows by induction . 18



CHINESE REMAINDER THEOREM
COPRIME / RELATIVELY PRIME
"
Let a. be 7L be arbitrary .

Then
,

we say a and b are

' '

coprime
' '

if gcdca, b) = 1
.

PAIRWISE COPRIME

Let m
, , Mz ,

. . .

.
mk be a list of integers .

We say this list is
' '

pairwise coprime
"

if

every pair of distinct elements is coprime ;

ie gcdcmi , mj ) = I if itj .

CHINESE REMAINDER THEOREM FOR I

'
"
- Let a

, .az , - . .

, ak denote arbitrary integers ,

and let M
, , Mz , . .

.

, my be a list of

pairwise coprime integers .

Then
,
the system of congruences

( KI a , (mod m
,
)

K Z Az ( mod Mz )

( :

KI ak ( mod Mk )

has a solution KEI
,

and this

solution is also unique in modulo m,mz .. . my ,

ie if ye 7L is a solution to the system
above

,

then k y ( mod mimz - - - mu) .

Now
,
we can show why this solution is unique .

Pioof . First, assume there exists integers

Suppose x.y C- I both satisfy the system of congruences .
bi , bz , - .

; by such that

I !!!! !?!!?!;
,

I!:÷
.

! !!!! :÷
,

. . . I::÷. :c
'm

:O: Tnm. in patiala. ⇐ scmodmii tie-In. us
.

bail (
mod mu) .

implying mil Cx-y) fi
.

So
, by A9Q4 , since m

, , Mz ,
- - ; Mk one pairwise coprime ,

Then
,

note that

i

aibi = a ,b , t azbz t . . . + aubu it follows that (m,mz . . .mn/Cx-y) ,

implying Ex]=Ey7 in 74M,mz . . - Mick . D8
I a

,
Ll) t azco) t - - i t auto) (mod m

,
)

I a , (mod mi) ,
u

so that I aibi = a
,
( mod mi ) .

i=i

Similar computations show FI
,

aibi = aj
(mod mj) Vje ! 1,2, . .. ,k}

,

be

so that X= Taibi is a solution to the system of equations .
c-=L

We now show why b
,
exists .

Since b
,
:O (mod mi ) HIEI 2,3 , - i ; k}, it follows

that b
, lmj V- je I 2,3, - - ish } .

Let M
,
=

Mzmz . . . Mk .

Then if b
,
' C

,
M

, for some c
,
c- 7L

,
then b

, automatically

satisfies b
,

0 (mod mi ) for 2e i Ek .

Next , if b
, satisfies the first congruence, we need

to find a c
,
c- I such that c

,
M

,
I 1 ( mod mi) .

We know this can only happen if Cc, ] = EM,]
"

in Elm,2 ,

which in turn can only occur iff gcdcmnm,)
=L .

But observe if gcdcm, , m,) -1-1 , it implies M
,
& m

,
shoe

a prime factor .

By def ? , this factor would divide both m
,
and one of

the other integers in M
,
-

-

mzmz . . . my , implying
this

prime is a common factor of m
,
and some mi for itt .

This is a contradiction, as m
, , mz.mg . . .

,
mu is pairwise

coprime by assumption !

Thus M
, necessarily has a multiplicative inverse in 21M,

I
,

implying 7- c
,
c- 2 such that c ,m ,

I ( mod mi) .

So letting b
,
-_ Cim , gives

us the integer we want .

A similar proof can be used to show why bz , b , . . . . , bk

exist as well
,
( we can set bj=cjMj , where g. c- 7L and Mj

-

- ¥, Mj )
and this is sufficient to show a solution exists .

*



EXAMPLE : XI 2 (m3)
,
x=3 Cms)

,
X 2 (m't) ( Elm,mz - i. Mick) I (21M,

2) (74mi ) - . . (2/mkI )
'

We can use the Chinese Remainder Theorem
'

'

Suppose m
, , mz ,

. . ; mic
are pairwise coprime positive integers .

to find the solutions XE 2 to the system
Then we must have that

( x 2 (mod 3) ( 21mm, . . - m,c2 ) I ( Ilm,
2) ( 21mF) - - - ( ZIMRI)

.

<
KI 3 (mod 5)

Pewof . First
,
let [in = n2tx for any

next
,
seek .

( KI 2 (mod 7) -
Then

,
let the homomorphism between rings

To start , let M
,
-- 5.7=35, Mz =3 - 7=21 and Mz 3.5=15

,

§ : (74M,mz . . - my 2) → ( Ilm
,2) (74mi )

. . . ( 21mi) be defined by

using the notation from the proof .
( ["Tm

,mz . . .my
) = ([Hm

,
,

Ex ]mz , - - -

,

[" lmk ) V-E"]m,mz . . .net?4MiMz---mk .Then Ciicz , Cz are determined by solving

① 359=1 ( mod 3) I First , we show this map is well - defined.

⇒ 35C ,
- 36C

,
I l - 364 ( mod 3) If EX]m,mz . . .mµ= Cy]m,mz . .. my , then ( mimz --- Mk ) / (X-T ) .

- C
,
I 1 ( mod 3) ' : 36913

⇒ In particular, we have that m
,
I CK-y) , mzlcx

-

y)
. . -

, Mick"-Y) ,

i . 4=2 's
so [Mm

,
= Ey]m, for each lfifk

.

② 21oz I 1 ( mod 5 ) i and

Hence 0(Emm
,mz . . .mn/--0/Cly3m,mz ..- mu ), showing this map is

⇒ 21oz - 20oz I l - 20oz Caird 5)

well -defined .
⇒ Cz = I ( mod

5 ) - i 20cal 5

Then
,
we can similarly check ¢ preserves

i . Cz =L ;
addition

, multiplication and the unity .

③ 15cg I 1 ( mod 7) -

To show of is injective, we show her 4=40} .

⇒ 15cg - 14cg
I l - 14cg ( mod 7)

Suppose we have a coset Ek]m,mz . . - m , such that

⇒ Cz Il
( mod 7)

- i 14cg 17
(('' Im

,mz . . .my/=(E03m,.Eo3m, . . . . EO ]mk
)
.

'

'

' (3=1 .

Then × satisfies the system of congruences

so
,
we get

that C
,
= - l

, 4=1 and ↳ =/ '

f x
0 ( mod mi )

>CIO (mod Mz)

Hence b
,
-_ GM ,

= - 1135) = - 351 c

,

bz = czmz. I 1 ( 21 ) = 211
and ( x o (mod Mk) .

solution to the system, and by the

b
,

= (3M, = 1115) = IS
, clearly geo is a

uniqueness of solutions in the CRT we can deduce

so our solution to our system is

that x o (mod mimz --- Mk ) ,
so
[Dm

,mz ..- m,c=
["Tm

,Mz -- - Mk
-

x = a
,
b , t azbz + a3b3

So kerf is the zero ideal , proving that ¢ is injective
. #

= 2C- 35 ) t 3 (21) t 2115)

Next, to show of is surjective , suppose we are

⇒ x = 23 -

given an arbitrary element

This solution is unique
modulo 3-5.7=105, so that

( (aim
, ,
[aim

, .

- i .

.

[aim
,
) t it.lk/mi7L) .

if y C-2 is another integer solution to the system .

By CRT
,

7-KEI such that
then y

I 23 ( mod 105)
.

ISOMORPHISM Ikea ,
( mod mi

ICI Az (mod Mz )
'

s

,
Let § : R → s be a ring homomorphism . *

a similar definition
(

Then
,

of is an

" isomorphism
"

it exists for homomorphisms f !

between groups . Kean (mod Mk )

¢ is also a bijection .

and since
'

Alternatively , 01 is also an isomorphism

ring homomorphism 0 ((x]m,mz . . .my ) = ( (aim
,
,
[aim
,
,

- . .

.

Lale ]mk) .
.

if there exists a

yo¢= idp and it follows that ¢ is surjective .
4 :S -712 such that

§oy= ids , where idk and ids are

so
,
since ¢ is both injective & surjective . it follows that

the identity maps
on R and S respectively .

¢ is bijective , and so 0 is an isomorphism

; If an isomorphism
exists between rings

from 21mm, . . . m.cz to ( Ilm
,
2) (21mi ) - ' ' ( 74mF) - DK

R and S
,

then we say
R and S

are
"

isomorphic
"

,

and write RES .

Note the relation
"

E
"

on rings
is

an equivalence relation .



FIELD OF FRACTIONS OF AN INTEGRAL DOMAIN

THE
''
FRACTION

''

EQUIVALENCE RELATION RE d
, F : RE R}

Let R be an integral domain -

- ! Let R be an integral domain . Then

let the relation ~ on Rx ( 121403 ) be

R is isomorphic to the subring IF : RER} E OCR) .
Such that Ca

,
b) N ( c,d) if ad=bc .

Pioof . We first verify Ro -_ IF : re R} is a subring of OCR) .
Then ~ is an equivalence

relation .

Clearly since f- E Ro , so that Ro has the unity of QCR) -

Pif . First
,

since ab=ba, it follows

that Ca, b) n Ca, b
)
,

showing
~ is Then

, given ay, bye Ro , notice that

reflexive . ay - by = a.li?-t-=a-,b-ERo
Then

,
if (a. b) ~ (c.d) , then

and

thus cb= da, so

necessarily ad -- bei f- . by = T.by = aid E Ro ,

that ( c. d) N Ca, b ) .

So by the Subring Test Ro is a subring of R .

Lastly , suppose
we are given Ca

,
b)
, Cgd), Cef

) E 12×(121%3)

such that Ca
,
b ) N (Cid) and (Cid) - Cest) . Subsequently , let the function o :R→Ro by Ecr)= F HER.

By defy , this implies ad=bc and 4- = de . We claim o is a ring homomorphism .

Indeed
, for any

r
,
SER

,
we have that

Multiplying the former ega by f yields

adf = bcf ① oecrts) = TI = Ft f = Ocr) + ocs);

⇒ adf = b (de) ② ocrs ) = I = ÷, = F. ST = ocrytols) ; and

⇒ afcd ) = be 'd) .
③ OCD = f- ,

integral domain and DFO
,Then

,
since R is an

so that o is a ring homomorphism .

we can use the cancellation property to conclude

Moreover
,
o is clearly surjective, and the fact that

that af = be
,

so that ca, b )
n ( e.f) , and thus

Ker 0=403 ( since Ocr) =p implies r
-

- o) tells us 0

that ~ is transitive . Da
is also injective .

'

'

We denote the set of equivalence classes
Thus or is bijective , and hence must also be an

of ~ by QCR)
. isomorphism , pwning the claim . BE

Example : Q EVERY ELEMENT OF R HAS AN INVERSE

[(a. b) I
' '

stands for
" I- IN QCR)

FIELD OF FRACTIONS .

'

:
Let R be an integral domain . Then for

every element AER
,

there exists an a-
'
c- QCR)

' ! Let R be an integral domain -

an addition operation
*
for notational ease

,

Then , we can define such that a - a- ' = I .

on OCR) by
we write ÷ to

pµf. Note since QCR) is a field, every non- zero

[(a,µ, + [(c,
d,] = [ fcadtbc) ,

bd)] represent the equivalence element of Ro has an inverse in OCR)
.

class (Ca
,
b) ] in QCR) .

and a multiplication operation by
But since Roz R ,

the claim follows them

[Ca, b) ] x [Cc,
d)] = [Cac, bd )) .

here .

that QCR) is a field with

we can show EVERY ELEMENT OF QCR) CAN BE WRITTEN

respect to these two operations ,
called the

AS ab
' '

; a ER
,
be R

''

field of fractions
"

of R .

' '

- Let R be an integral domain . Then for any
Pheof. First , suppose

[Caleb, )]=[Caz .bz) ) and Kci , di)] -- (ccz.dz,].

Then
,
this implies aibzbiaz & 9dz= ditz . element QEQCR) , we can show there must

exist some AER
,
be R such that q

-
-
ab
' '
.

Subsequently , note that

(a,d, +
b
,
g) Cbzdz)

= (aibz ) did + (cldz) blbz
puff . This follows from the fact that

= ( b
, add.dz t Cdiczlbibz ay = ay . I = (f) . (by)

' '
= ab
' !

= ( azdztbzcz) ( bidi), (and that ga E OCR)) . TB

and thus aid,tb, C,) , bid, ] = [(azdztbzcz . bzdz)],
so [Ca

, ,b, ) ] t [Cc, ,d, ) ) = [Caz .bz)] t ((Cz.dz'],

showing t is well defined.

A similar proof shows x is also well defined.

Next, we claim [CO, b) IE OCR ) is the additive

identity , where berlin } is arbitrary .

Indeed
,

note for any
[Cgd) ] E

QCR)
,

we
have

that

[ CO, b) ] t (cc,d
)] = ((o -dtbc

,
bd)] = [Cbc, bd)]=[kid

))

(the last equality holds since bed -_ bdc . )

A similar check shows that [Cgd) ) + [co, b) ]
= [Cgd)) , so

that

[cab)) is the additive identity .

A similar proof shows [( 1,1 )] is the multiplicative identity of QCR) .

Subsequently , we claim for any
[Ca,bD c- QCR) with Kgb)] 't -40,03

for any a-Rko},
Kb
,
a) ] = [(a. b)5 !

First, note ato
,

since [Ca, b)It -40,43 implies acto , and so a to

as Cto .

Thus (Cb,a) ] C- OCR)
,

and

Ecb, at] - [Ca, b) I = [Cba, ab) ]
= Echl))

,

with a similar proof showing that [Ca.bD - [Cb, a) 7=14,113, so that

[Cais) ] -- Ccb, a ) ]
- !

We can use similar lines of reasoning to show

QCR) obeys the other conditions of a

field- Dh



LOCALISATION
LOCALISATION

MULTIPLICATIVE SET
÷ Let R be an integral domain

,
and

!
Let R be an integral domain -

,

S be a multiplicative set S in R .

Then
,
a subset SER

,
where SFO,

Then the
' ' localisation of R at S

' '

,

is called a

' '

multiplicative set
' '

if

denoted as S
- '
R
,

is defined to be

IES and S is closed under multiplication;

the set of equivalence classes of ordered

ie if aes and bes
,

then ab ES .

pairs in RXS
,

with the equivalence

relation being that Ca
,
b) ncc,d) if

ad -- be in R .

'

The addition and multiplication operations are the

same in S
-' R as they are in QCR) .

Also
,
R is isomorphic to a similar subring of

S
- ' R ( ie with denominator 1 ) and every

element of S has a multiplicative inverse

in S
- '

R .

COMPLEX NUMBERS
The set of complex numbers

,
or d

, TERMINOLOGY
is given

to be the set of ordered

STANDARD FORM

pairs ( a. b) C- Rx IR
,

where we represent
'
'

Let ZEE .

Then
,

the

each ordered pair
( a
,
b) by atbi ,

form 2- = at bi , where a. b EIR ,

" standard form
' ' for Z .

where i
'd
= - l .

is called the

Moreover
,

we define an addition on ①
REAL PART

by '

'

:
Let zee , and suppose

2- = atbi ,

( at bi ) t ( ctdi) = (atc) t Cbtd)i

where a. BE IR .

on Cl by
a ER is the

" real
and a multiplication Then we say

( a+ biycctdi)
= Cac- bd) + ( ad + bc) i -

part
"

of z ,
denoted by Rett) .

Q IS A FIELD IMAGINARY PART

:
with respect to the two operations -

'

:
Let zee , and suppose

2- = atb"

defined above , we can show Cl is

where a
,
b EIR .

a field -

Then
,

we say
BER is the

"

imaginary
with the ordinary

Puff . Since + agrees part
"

of z ,
denoted by Imf) -

additive structure on IRXIR
,

we can deduce

¢ is an abelian group
under addition - COMPLEX CONJUGATE

Then
,

note that
' !

Let zed, and suppose 2- = at bi ,

( (a+biycc+di)) (etfi)
= (Cac -bd) t (adtbclilcetfi) where a

,
be IR .

=

(Cac- bd)e - ( adtbctf ) + (Cadtbclet Cac-bdlf ) Then the
' '

complex conjugate
"

of Z
,

= ( ace - bde - adf - bcf )
+ (acf - bdftadetbce) i denoted by I , is defined to be the

and complex number

(a+bi)( ( ctdiketfil) = (atbi )( Cee -df) t Cdetcfti
)

I = a - bi .

=

(ace- df) - bcdetcft) + ( bcce-dfltacdetcf)) i MODULUS

= ( ace - adf - bde
- bcf ) t ( bee - bdftadetacf )

"
-
"
s Let zee , and suppose

2- = attic

where a
,
be IR .

= (Catbilcctdilketfi ) ,
Then

,
the

' 'modulus
"

of -2
,

denoted

showing multiplication in E is associative .

by Izl
,

is defined to be

Moreover
,
IEE is a multiplicative identity , and note that

(atbilcctdi ) = Cac- bd) t ( bet ad) i Iz ) = Ja2_bT
.

= ( ca - db) t ( cbtda)
i

= ( ctdi) (at bi) ,

showing multiplication is commutative in E.

Next , observe that for any
atbie Cl

,
we have

that

ca+bik÷. - Yai) =(a÷. - C :÷.at/tlaa#.-aaIali
= I t Oi

= I
,

so that every atbiec has a multiplicative inverse

a

⇒ - a¥bri in Cl .

We could also show the distributive laws hold in Cl ;

this would be sufficient to show Cl is a field . Dq



PROPERTIES OF COMPLEX NUMBERS

z_wT = I + I Imcz) E IIMCZH f 171
'

Let z
,
we E be arbitrary .

'

'

Let ZEE .

Then Imlz) E TIMAH E lzl .
Then z_wT = It T -

( similar proof to the
' '

Re
"

section . )

Puff . Write 2- = atbi and w
-

- ctdi,

where a
,
b
,
c
,
d C- IR .

Then z+w= Cate) tcbtd)i . I 2-w/ = I -2/1w/
Thus z-wT = Cate ) - Cbtd

) "
-

"
s Let z, we

Cl .

= ate - bi - di

Then Izwl = Izllwl .
= (a -bi ) t

Cc-di )

= I + I , as needed - DE pyof . Write 2- = atbi and w=ctdi
, for

some a
,
b, c, d C- IR -

ZT = I. I Then zw = (atbillctdi)

.

'

.
ZW = Cac - bd) t ( bctad

) i
,

"
-

Let z, WE
E be arbitrary .

So that

Then Fw = I - J . lzwl
'
= Cac- bdl't Cbctad)

?

= ah' - Zacbdt b
'd't BE't Zadbctad

Puff. Again , write 2- =atbi and w -
-ctdi

,

= a'c' t b'd
'
t b'c
'
t a'd
'

where a
,
b
, c,
de IR -

= (a't 5) (c
'
+ d
' )

Then zw = Cac- bd) t (adtbc) i ;

thus , = Itf Iwf,
tw = Cac - bd) - Cadtbc

) i
.

implying that lzwl = lzllwl , as required .

Day
But I.J = (a- bi ) ( c -di )

= Cac - C-b)C-d)It C-be -ad ) i II I = IZ I
= (act bd) - (adtbc) i

'

'

Let zee -

= ZI
,

completing the proof . Da Then III = 171 .

-
( proof is trivial . )

-
- I

z
- I = z

TRIANGLE INEQUALITY FOR E
Let zee .

Then (Iz) = ¥ .

Puff . write 2- = atbi, where a. BER- -
"
. Let z ,

we 1C be arbitrary.

Then I = a÷. - a¥zi , implying that Then necessarily lztwl E 171 + Iwl '

(II = a÷ t a÷zi . puff . First, note that

Iztwl
'

= Cztw) Cztw)
But notice that

at bi = (ztw) (Ftw )

¥ = ÷.
= Ii - orbit

= ZI + WE tzwtww

=
a-b

= iz ,
-
+ hit + HTT HTT) )

AZ-162

= 1712+1 w't t 2Re(tw) .
=a÷. + a¥ri
- Then

,
since Reftw) f lzw-t-lzl.tw/=lztlwl ,

= (¥) , it follows that

completing the proof . ④ 1z+w1
'
= Izftlwl't 2ReCzI )

= f iz't + hilt 212114

z = z
: . Iztwl

'
= ( Izltlwl)

"

Let zee .

Then CI) = 7- ,

and taking the square
root of both sides yields

(Trivial proof. )
Iztwl E Izltlwl ,

2- + I = 2Re (Z) which we wanted to show . B

' ! Let zee .

Then 2- + I = 2ReCz) .

( Trivial proof - )

z - I = Zi Im(z)
-

"

: Let ZEE .

Then z -I = 2iImCH .

( Trivial proof. )

z - I = 1712
'

:
Let ZEE .

Then z - E = 12-12.

Pref. let 2- = atbi , where a.be/R .

Then z -I = (atbi )
ca-bi )

= a'+ b
'

= (Nazi)
'

= 1712
,
as

needed - Dk

Rett) f I Recall f 171
' ! Let ZEE .

Then Retz) f I Recall E 171 .

Pioof . Let 2- = atbi , where a
,
be IR .

Then clearly a flat
,
establishing

the first inequality .
2

Next
,
note I Rett)l= a

'

f atb
'

-

: b'30

= 12-12
I

so that I Retells Izl
,

establishing

the second inequality . Du



THE FUNDAMENTAL THEOREM OF
POLAR FORM
io ALGEBRA
e

" "
- The Fundamental Theorem of Algebra

states that

-

Let the angle OE IR ( in radians )

\ FedEx] has a

be arbitrary -

any non-existent polynomial
Then

,
we define the complex exponential

root in Cl ; ie there always
exists a

function at O
,

denoted by eio,
CECI such that fcc)=0

.

BY
eio = cos O

+ isino .

ALGEBRAICALLY CLOSED
'

Note that regardless
of O

,

'

'

Let F be a field .
Then

,
we say

F

- =✓T= I .Ieiol = ✓ wszo + Sino 1

is
'
'

algebraically closed
" if every non- constant

Im

POLAR FORM (a,b)
.

n

polynomial fee FEX] has a root in F.

' ÷ Let ZEE
be arbitrary .

- closed if and
Then the

' '

polar
"

form of Z is
rtraztbz Alternatively , F is algebraically -

given bz= reio # re f every non -

ansatantpwa.la?Jnoofiat,..nefIH
"

' can be factored as

O is the anglewhere r= HI and polynomials
from the positive x - axis to the line segment

f- = c ( x - a, ) ( x
-az )

- . . ( x-an)
,

✓

from Ca,b) to the origin .
where c

,
a
,
, . . .

, ane F
and n= deg # '

ARGUMENT
PWIF- First

, suppose
F is algebraically

closed .

' Let 2- E E be arbitrary, and write

2- = reio
,

with r
,
OER . Then

, if n=l , f=axtb for some a. BEF with

Then o is called the
" argument

"

ato
, so that f .- alxta

-' b ) gives the

of Z - faetmisation of f in the required form .

MULTIPLICATION IN POLAR FORM Now, assume the claim is the frail polynomials of degree n

- : suppose z, ,zzE E
are given in polar in F[x]

,
where n > l -

form , with z
,
= r,eiO' and Zz=rzei%

, let feffx] has degree
htt .

for some r
, , rz C- Rt and 01102€ R-

Then
,
since F is algebraically closed

, f must have a root in F -

Then z,zz= ( r,rz) ei
' +02)

.

at this root be anti .

So
, by the Factor Theorem

,
f- = gcx-anti ) , where ge FIX].

Pweef . By definition ,
z
,
= r,eiO' = r

,
Cws O , + isin 01 ) In particular, deg (g) =n , so that by the induction hypothesis ' we

and Zz = rze
" 02

= rz (cos Oz -1 isin Oz) . have that

g
= ccx- a , )

CX-az) . . . ( x-an)

Thus
so that

. .
. ( x -a.) CX

-anti )'
z ,zz= ( r, (cos O , tisino, )) ( rzccosoztisinlz))

f- =gcx
-anti )

= ccx-a.) Cx
-azl

= r
, rz ( cos

0
,
t isin O , )CwsOzt isinoz

)

proving the claim is true fur ntl also .

= r
, rz[( cos O, cos Oz - Sino, sing) t ( Sino,wsOztwsO, sin i] UnfN '

#
Eg induction , it follow that the claim is he

= Th ( (cos @ , -1oz) ) + (since,-1021 )i ] conversely, assume
F is a field fr which every

non-constant polynomial

i. 72-2 = r,rzei(01+02) which we wanted to show. BE in FCX] factors as a product of linear polynomials .
/

This implies for any f- c- f- Ex] which is non-
constant. we can

DE MOIVRE 'S THEOREM
write

'
"
- Let Ze E) 40} be arbitrary, and

f = CCX-a
,
) ( x-az ) . . . ( x -an )

,

suppose 2- = reid
,

where re Rt and OER .

where n
-

- degcfl 3 I -

Then
, for any

NEZ
,
we have that

we roots off, it follows that F is

zn = rneicno)
.

Indeed, as a
,car ,

- ' 'can

the
backward argument

- DE
then z°= I = ✓Oei 0=1,

Pweof . First , if no, algebraically closed
, pwning

pwning the base case .

Then
,

assume the result is the for some new .

This implies zn= rneicno!
So
,

zn
"
= zn . z = ( rneilno

)
) ( re

:O )

= rntleicnoto)

: . z
""
= rntleicn-1110

pwning the claim holds for htt as well .

It follows by induction that the claim is true then .

Moreover,
observe for any

new,

( r
-neil-no) ) ( rneicno

)
) = I

.

But since rneilno ) = (reign
,

it follows that Cr
-neil-not ) = Creil)

- n

,

which exists by uniqueness of
inverses .

Therefore the claim is true the 7L
,

and we

are done . Dk



SOLVING EQUATIONS IN E
SOLVING 7h = a IN E QUADRATIC FORMULA FOR A FIELD

' "
- Let aek and ne It be arbitrary .

' ! Let F be a field with char F- f- 2
,

and suppose

write a in polar form, so that are
:O

we are given a
,
b
,
CE F with a -1-0 .

Suppose further there exists a yef such that
y
'
-_ b'- 4ac .

for some re IR't and OER .

Then there are exacttyndistinctsolut.to# Then the quadratic equation
z to the equation zn=a , given by a×2 + bx t c = O

z = YT . ei(O+n) has solutions given exactly by
I

x= C - bty ) ( za)
' !

where KE 40,1, - - i

,
n - I } .

Pweof . First
,

assume Z is a solution pneof . First,
notice that

to the ega ( which we know exists due

a ( c-b±y> ( za,-112 + BC- hey )L2a
") + C = (4a5'Cb2I2byty4tC2a5't-btby) -1C

to the fundamental theorem of algebra),
= (4A

-1) ( b't 2by+ 5- 4ac - 2b
'

±2byt4ac)
and write z -- Sei ? where s >O and of EIR .

= O
,

This implies
that

so that both values of x given above are solutions to
IO

za = (seif)
"

= she
"Y

= a = re -

the quadratic equation . #
Then

,
since Isner / = lreiol it follows that r=sn

, conversely , suppose
that xef satisfies aitbxtc -' O '

so that s = YT.
Then

, aC×2+ a-' bx) t c -- 0

Additionally , not = Ot 2kt for some KEI
,

⇒ a (x't a-
'
bxt (za)

-2b' ) - (4a5
'

b'to = 0

so that of = Ent 2k¥.
acxt ( Za)

-'
b)
Z
t ( 4A)

- '

C4ac - 54=0

But note that only taking 6=0,1, - -in -1 yields
⇒ a ( x + ( za)

-' b )
-

= ( b
'
- 4ac)C4a5

'

distinct values for the argument of z
,

so that there

are exactly n possible nth roots .

:-(Xt ( za)
-'
b )
-

=
( b
'
- 4ac)C2a)

- 2

.

Finally , we can verify these are indeed root of

the two square
roots of the RHS are

the equation : from here
,
note

Y - ( za)
' ' and -

y
- ( za)

- I

,
since y
! 5- 4ac .

(yp . @
ICE -12¥ ) )

"

= re

"""""
= re

:O
.

- a . as

Thus xx ( za)
-
'

b = Iy - ( Za)
- I

EXAMPLE : 2-4 = ( Iti)
and so

-

'

fi! we can use the method described
× = - ( za)

-
'

b I y (Za)
- t

,

above to find the solutions in E

of the equation z4 = Citi ) . : . X = (-bty) . ( Za)
-

!

First
, note r = fH= VI

,
and that pwning the theorem

. Da

D= tan
-' (f) = If

,
so that

Iti = NI ei
.

It follows that

z= (vz)
# ei +24¥ )

,
weighs}

⇒
z= z'Teil +

'¥)
,

keto, 1,433. #



IRREDUCIBLE POLYNOMIALS
'

-

"

let F be a field , and f- C- FEX] a

IRREDUCIBLE POLYNOMIALS IN1

non- constant
-

polynomial .

that f is
"

reducible
"

if IR[X)
Then we say

proper factorization f- 9h
'

fcc) = O ⇒ f- (E) = O
f- admits a

degcg), degch ) > t - '

'

:
suppose fER[x] is such that fccko, where CEE -

where g. he
F- Ex] and

Then necessarily FCE ) = O also .

otherwise , we say f
is

"

irreducible !
'

Peoof- First, write
'

In other words , f is irreducible if
f- = anxnt am,xn

- '

t - -
- t a,x tao,

whenever we have a factorisation f=gh
where ao, a , ,

. ..

,
an ER and anto '

with g.
he FED , necessarily either g

or

Then
,

since fcc) =O, it follows that

h must be constant .

O = and + an-1cm t - - - t a,ct ao
-

deg f 32 , f IS IRREDUCIBLE
yawing conjugates of both sides yields

that

-

⇒ f HAS NO ROOTS IN F
f = O = and + an..cn

-'
t - - - tattoo

and
-
"
-

Let F be an arbitrary field , = ajcn + anTcnTt - - - ta
,
c- + AT

f- C- FIX] be a polynomial with deg 32 .

= an In + an-ich
"

t . . . + a,I tao .

Suppose f is irreducible .

So that FCE) = O , completing the proof . Dk

Then f has no roots in F -

f IS IRREDUCIBLE IN REX] (⇒ deg(f)= I
Puff . Suppose f

has a root CEF.

Then
, by the Factor Theorem

,
this implies we OR deg(f) =2 AND f- HAS NO REAL ROOTS

can write f=Cx-c) h for some he FIX] . ' ÷
Let feR[x] be a non - constant polynomial .

But since degcx-4=1 and degch)
-

- deg 't) - I 311 Then f is irreducible in IRIX]ifandonlyifthis
is a contradiction to or assumption that

deg (f) =/ , or deg (f) =2 and f has no real roots .

f- is irreducible -

pref. first
, if degcf, =L or deg4-1=2 and f has no real

Thus f cannot have any
rook in F

' PWM
roots

,
then the work in the previous sections tell

the claim . Da us that f is irreducible -

conversely , suppose f- c- REX] is an irreducible , non -constant

deg (f) = 2 or 3
, f HAS NO ROOTS IN F

polynomial .
f- C- Efx] also .

⇒ F IS IRREDUCIBLE since REE , it follows that

Then
, by the Fundamental Theorem of Algebra, f

has a

' "
- Let F be an arbitrary field , and

complex root CECI .

fef[×] be a polynomial such that deg =L
a real root , and

If CER
,
then f has

or deg-41=3 .

the irreducibility of f forces deg
= ' -

Suppose f has no roots in F'
otherwise , c¢lR , so that e- Fc and so c

Then f is irreducible -

is also a root of f '

Puff . Suppose f is reducible - Then
, applying the Factor Theorem

, we get that

Then we can write f hi
f = ( x-c) ( x - E) h for some other polynomial ht 3

.

where g. he
FEXT are non - constant polynomials .

Note that

g= (x
-c) Cx-E ) = x

'
- (ctclx t CE = x

'
- (2Rec)xtkfelR[x] .

It follows that deg(f) = degcg) t degch) ,
and so (since degcf) = 2 or degcfl =3)

Thus
,
if we carry

out division with remainder of f by g
it forces degcg) = I or degch ) =L.

Either way, this means f has a linear
in pix]

,
we get that f- =gh' tri

factor, and this linear factor necessarily has a

where h
'

, re REX] and degcrlc 2 -

root in F .

But if we do the same division with remainder over

In turn , this implies f
has a root in F,

Gtx]
,

we know we get that f=ghtO .

which is a contradiction .

it follows that
r=O

,

Thus f is irreducible after all
,

which we

since the remainders are unique,
wanted to prove

. BE
so that h= h

'
.

f- IS IRREDUCIBLE (=) deg Cf) =L consequently , f =gh in RED
,

where degcg) -- 2 .

POLYNOMIAL By the irreducibility of f , h must be a constant polynomial.
( f IS A NON- CONSTANT

FIELD)
This implies f = kg, where his constant , so that

IN AN ALGEBRAICALLYCLOSED
f is also of degree 2 with no real roots . DE

'

Let F be an algebraically closed field .

Then a non-
constant polynomial f- C- FCX]

is irreducible ifandonlgif deg (f) =L .

Puff. Clearly a linear polynomial over any

field is irreducible .

Conversely, if FEFEX] is irreducible

and degcf) > I , then f has no roots in

F .

But this is impossible since F is algebraically

closed , so that there are no irreducible

polynomials of degree larger than I in FCX] . Dk



IRREDUCIBLE POLYNOMIALS IN ④Ex]
RATIONAL ROOTS THEOREM
'

'

÷ Let f- E IQCX] be a non- constant polynomial ,

and suppose re Q is a root of f .

Suppose further that

f = anxht any x
""

t - - - + a,xt ao ,

where ao , a , , .
.
.

,
an C- 7L and an -1-0 .

Then
, if r= Iq ,

where p,qE2 and gcdlp, E)
=/
,

we must have that glan and place in 2 .

Puff . Since fCPql= o , it follows that

an(Iq )
"

t ane, (Igf
- '
t . . . + a, (f) tao -- I

-

Multiplying both sides by q
" and re-arranging

gives us that

aoqn = - ( anpntanypn
-'

q t - i. + a,pqn
- t)

= - pcanpn
- '

tan.,pn-4 t - . . + a,q
"')
,

showing that
p I aoqn .

Then since gcdcp, qn) =L, it follows that place .

Similarly , if we isolate for anpn instead of aod,

we deduce that qlanpn , and since god ( Upn)
-

- I
,

we get that qian , completing the proof . Be

SHOWING NUMBERS ARE IRRATIONAL

We can use the Rational Roots Theorem

to evaluate whether a given
GEIR is

irrational .

Example : we can show that NITVJERIQ .

First , let a- Vitus .

Then note that

42 = 2-1 2VT -13

= 5 -12N
so that

42 - 5 = ZIT

and hence

(f-5)
2

= (WTF

= 24

⇒ 44-1042+25 = 24

and so y is a solution to the polynomial
f-=x4 - 10×2+1 .

Then
, by the Rational Roots Theorem

,

the only

candidate rational roots of f are land -l ;

but since fu) = fc-D= -81=0,
this implies

that

4
, being a root of f, cannot be rational !
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