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Chapter 1:
A Short Introduction to 
Mathematical Logic and Proof
BASIC NOTIONS OF MATHEMATICAL LOGIC

AND TRUTH TABLES
DEFINITIONS
- "

- A
"

statement
"

is a
mathematical

'

sentence that can be determined
to be

true or false .

-

A
"

conjecture
"

is a
statement which is

widely regarded
to be true ,

but no proof

for it exists
yet . ( there

is evidence
or

strong speculation for
its validity) .

"

An
''

axiom
"

is a
statement that

is

assumed to be the ,
with no prerequisite

proof required .

STATEMENT
"

OPERATIONS
"

EQUIVALENCE
NEGATION / NOT

(7)
' '

' statements p
and q

are logically
÷ :÷÷÷÷÷÷÷÷÷::'m:* i

:÷i÷÷÷÷÷÷÷÷÷÷÷÷
:

F
ie . p

holds if and only
if q

holds,

( ie p ⇐ 9)
' T T

*
the law of the

excluded middle :
o ,

P & Tp
are never both

T or F -

"

anticedgent
' '

a'
'

consequence
"

-

*
this does

NOT imply statement p
is the same

as

IMPLYING STATEMENTS
(⇒) =

statement q .
Rather, it implies

that p
& 9

have the same
' 'output

" ( TIF ) under
allinputs .

' : If statement p implies statement q ,

omreanp,
⇒qq.at?oen+mteh.etmthofP CONTRAPOSITIVE * Twnemctanheseenthnatb'The contrapositive

-

'

- The contrapositive
of a statement p

⇒q
L

of p
⇒ q

is logically equivalent
to

p⇒q can only
be F

is Tq
⇒ Tp i

ie to get it , you*
note : if we look

at the truth
table ,

we see that anythingfalse
can imply

if p
is T but his F !

swim the positions of p
& q

and negate it .

(contrapositive
) → the above

can also
be proven

anything. both .

(
initial

( h & V) EXCLUSIVE OR (XOR
) statement' by the fact

that

is a tautology :

.fi?7n?..ano9.I?or.. operators are -

teenage?.at#e=is.Pf?Eieorgis ÷/¥¥ ep⇒pc⇒ae⇒ . "
T F F

T T the
statement is true

represented by the STM
""

true , but
not both '

f T T F
T regardless of

the inputs
(the truth

"

n
.. &

"

v
' ' respective'T

'

↳ pxopq
= ( p

v q) n - (pm
) . F F T T T

* "
or

..

is referred
to as

" inclusive
[identical !
) values assigned to P

& E) -

OR
"

.
CXOR)

(AND) (OR)
( NAND)

F T T
F T

F T F
F F



VARIABLES & QUANTIFIERS
- '

- There are
mathematical sentences whose

i
truth values are dependent on

additional COMPOUND SENTENCES
parameters

.

ORDER MATTERS
-

Take , for
instance ,

the
statement

"

× > o
"

.

-
'

- The order of quantifiers
in a statement

he statement may
be true or false

is very important ; any slight alteration
• T

depending on the value of
X , as

to it can change
the statement's meaning

it can vary ; hence
we call

×

ament is true.

drastically .

✓
This stat

a
'' variable

' '

'

why
? → for any

value of × '

For instance ,
consider the

statements
• we can

use the functional notation observe that
the

statement is true simply

pcx)
: × >
°

① Fx : Fz 7 X E Z ,

and
if z

-

- x .

to represent
this

statement '
for an × , there exists a

z such that XEZ -

- This statement
is false .

PC - 4)
is false ,

but pC3
) is true ,

why?
→ it implies a

least

• So ② F × z tf
-

z
: X E Z s

real number
exists, which

there exists a value for
x such that

for example
.

we know
is not true .

X E Z for all
values of Z .

Where x. z
are real

numbers .QUANTIFIERS
FOR ALL ( V

) NEGATION .

; another example
: take the

statement

"

there exists an
x such that pcx) is true

"

.

-

: The symbol
" V
"
can

be "¥
"

foray
. '

is known
as

-

If
'

: There are often many ways

I
to denote

"

for a"
"

'

the universal
'
to write the negative of

a

↳ to prove
it is false ,

we
need to show

statement with quantifiers
.

9fr-

pc×, is false for
all values of

× "

For example , to
say

"

for all x , pcx)
is true

"

,
-

Take , for instance
,
the statement

ie

we would write * this is a statement "

for every
x , PG

) is
true

" "

'

> ( z×zpc×)) (
⇒ Vx:7

that can be true
- T \

Fx : Pdx ) .

or false . → to prove
it is false , we

must
/ is for all x .

' for a the negative of logically pcx) is false -

to find that Pdx)
is false

"

there exists
an x

such eqivabtt
-

-

, If we want
to prove

the above statement
value of × :

ie

that µ, is
true

" to

to show
one

- (tix : pcx))
e> Fx

a Tpcx) .

only Ibe false ,
we need

- T
there exists an x/ is

counterexample -

the negative of
''

for all logically such that PK)

× , pix)
is true

" equivalent is false .
to

eg
the statement

"

for all natural
numbers n , n factors as

a

product of primes
' '

is false as it does not
hold for n =L .

THERE EXISTS ( I)
& SUCH

THAT (Z)
"

'
-

If we say
that

"

there exists an ×
* ''

there exists
"

is

known as the
1

such that pcx)
is true

"

,
it implies "

existential

that we can find
at least

I value
quantifier

. .
.

of Xo such that pcxo)
is true .

↳ in
mathematical notation

,

the

above
statement

would be written

as

⇒ x 7 pcx
)

.

T

there exists an
x
Tsuchthattpcx) is true .

'

To prove
that

"

Ix zpcx)
"

is true.

Z

we just need
to find an example of a

value

for x that makes pcx) true
.

eg to prove
' '

there exists
an integer greater

than 5
' '

we just need
to show that

the integer
6 is greater

than 5 .

-

j To prove
that

''

Ix zpcxs
"
is fate ,

we need to show the statement is false

for all possible
values of x -

eg
to disprove
"

there exists
a natural number

less than l
"

we just show every
natural number

is

greater than
it .



RULES OF INFERENCE &

THE FOUNDATIONS OF PROOF

DEDUCTIVE REASONING
' '

'

Deductive reasoning is a strategy for

proofing :
we start

with a hypothesis/

something
we know

to be true ,
and apply

"

rules of inference
" to reach our

desired conclusion .

CONSTRUCTIVE DILEMMA
"

if do is a dog . he is an
animal .

MODUS PONE
NS

- " constructive dilemma
States that if Fido is a potato ,

he is a vegetable.

- if
.

. modus ponens tells us that if
is true ,

and we
know

hence , if we know
Fido is a dog.

p is true
,
and p implies 9

.

"

if Fido is a dog' if p
⇒q &

r⇒ s

he must be an
animal .

' '

either p
or r

is true ,
then

either

then q
must also be true ;

and dogs are
animals ,

then Fido is an

q
or s

must be
true ;

ie animal .
' '

p n Cp⇒ g)
⇒ E

ie
-

[ Cp ⇒g)
A cress)) n cpvr

))⇒ cqvs) .

T

if p is true
I pimping mpiathateistne

, !¥÷me I , strait;mIi 'Ines ?
MODUS TOLLENS ''

if a spoon
is a dog ' il

if Fido is
a dog, it

must be an animal .

-

'

- modus Toilers
tells us

that
it must be an

animal . DESTRUCTIVE DILEMMA
However a spoon

is
.

: Destructive dilemma
States that if we know if Fido is a potato ,

it must be a vegetable -

if we know
that p⇒q is true ,

not an animal and so
it

p⇒q & r⇒ s
are true ,

and we know
that

since Fido is not an
animal'

and q
is false ,

then p
must

must not be a dog-
' '

he cannot be
a dog -

" "

either q or
s is false ,

then we
can

conclude

also be false ;
that either p

or r
must also

be false;

ie
ie

Cp⇒q) n ng
⇒ np

= (Ep⇒uncross]
A high- s)) nP?

ifpqisistyemeimpliesIT.sk'I¥iIEiI¥se
.

qp.mg#=IqorTispiseitmimarfieseiitTfisPe:
"

HYPOTHETICAL SYLLO"?f¥! , a dog , SIMPLIFICATION, ADDITION
- : Hypothetical syllogism

is basically it must be an animal
.

AND CONJUNCTION
an

" associativity
law

" for implication
:

If Fido is
an animal ,

it must eat
.

if p
⇒q is true , & 9⇒s

is true'

since Fido is a dog . . simplification tells
us that

it must
eat '

"
'

if we know p
d q

are both true,

then p
⇒ s

must be
true

too ;

then p is true .
- ie

ie

p Aq ⇒ p -

Cp⇒q) Icq
T l it if piste . -

Addition tells us that if we
know

if p implies his & it gimp"
-

es '

implies sifraes?
p
is true , then either p

or his true

is true

true

for any q;
ie

DISJUNCTIVE SYLLOGISM
p
⇒ ( p

V q
) .

' '

s Disjunctive syllogism says
that if "

Fido is either a

cat or a dog .
'

'

Conjunction tells us that if we
know

we know either p
or q

is true ,

If Fido isn't a cat,

P & q
are true separately .

then
it must be a

and we can
show p is false,

dog
"

.

p
and q

must be true together .
then q

must be true
;

ie

( p
V g
) n np

⇒ q
T

- qistrue .

if por q
is true I p%flse¥g

that

INDUCTIVE REASONING
'

'

In inductive reasoning ,
we instead

begin with
some specific observations

and then try to
draw out a

more

general
conclusion .



Chapter 2:
Sets, Relations and Functions
NOTATION
NUMBER SETS

-

Al denotes the set of
natural numbers :

& I , 2,3 - . }

-

I denotes
the set of integers

:

I . . -2, -1,0 ,
I
,
2 . . }

'
'

j Q denotes the
set of rational numbers

:

II : a ez , BEN }

'

IR denotes the set of
real numbers

.

INTERVALS DEGENERATE
INTERVALS

-
'

'

An interval
is any

set S which

' "
- An interval

is degenerate if
it either

:

obeys the following property
:

① is the
empty

set ;
or

② consists of only
one

element (a Singleton
set )

,

if V- x.yes ,

and

× e z Ey ,
then ZE

S '

ie gag where
a c- IR - Theemptyset

* Observe
the empty set,

0 or de } , is

OPEN ,
HALF -OPEN &

also an
interval .

Thesinglelon
Why?

→ proof by
contradiction

.

CLOSED
INTERVALS

* Observe Ia}
is an

interval .

Suppose
it isn't .

That implies
that

O-O
'

An open
interval is an

interval

both endpoints are
excluded "

why?
→ Ya } (⇒ [ a , a ] .

iewh the form
a b

going back to
our definition of z×,y , z e 0/74 (

Xf Z ' Y
))

.

an interval ,
and letting

This is impossible
because no such

ca, b) ,

or I x :
acxcb} .

x --a , y
-
-a "

× , y
exist in

0 !

we see
the only possible

value
unbounded

contradiction
:

therefore 0
must

Open
intervals can also

be

2- can
take is a ,

which

on one or
both sides

- meaning
be an

interval .

satisfies the condition
.

they can
also take the form

c-
I

b

( -N ,
b) or f x : xsb }

:

o-

( a , a )
or Ix : x > a} i→

a

-

& C -N ,
N ) or

d
,
x : XEIR } . c-

A closed interval is an
interval

where both endpoints are included ,

•-•

ie in the form
b

[ a , b]
or I x : as

xsb }
.

Similarly ,
closed intervals

can also be

unbounded on
one side ,

which take

To

the form I
b

(-o , b]
or

d
,
x : xcb}

•-

& (a , a )
or 4 x : x > a} .
→
a

' '

j Half
- open

intervals are intervals where

one endpoint is included and one is excluded ;

O-
•

ie in the form
#

(a, b ]
or I x : acx

Eb }
a y

•-0

& [a , b) or I x : aexcb } →
a b



SETS & THEIR

PRODUCTS INTERSECTION Ch
)

SET DIFFERENCE & -

- The intersection of
two sets Ad B (

AAB)
,

SUBSETS ( C l
E)

COMPLEMENT ( t .
C )

where A. Be e
,

is defined to
be

-
"
- A set A is a subset of another

set B

i

if every element of A is also contained - '
. The set difference

of a set B

p n B = I
,
× I × e A n x EB} .

"
minus another

set A ,
written as

in B .
'

Similarly , when
talking

about the
"

B) A
"

,

is defined to be

eg if
A is 41 , 2,3} , &

B is II.2,314,53,

intersection of multiple
sets,

we can

A- is a subset of B -

By A = I XEB I × # A } i
use the

notation

→ To specify that
A is a

subset of B,

ie BIA consists of all
the elements in B

we can
use the

notation

is

Aa
= A

,
n Az n

- - n Ai ,

that are not
in A -

A CB
or

A E B .

where A , ,
Az . - Ai

E E -

-

The above
notation indicates A might

-

Let E denote the universal set .

Then ,
VIA is known

as the

DE MORGAN'S
LAWS

complement of
A and is written as

equal B
'

f

→ If we want
to write A as

a MI

ne o.
A
.

.
① f.¥,Aaj =

,
IAI .

②eiAI= "

A: '

subset of B ,
then we

can :

① either further specif
A " "

UNION ( V) proof. Po÷¥ve LHS is the
set of

② use the notation
AEB ' ( AUB ) Eve LHS is the set of

a" the

everything except
the common

-

The union
of two

sets A & B

intersection of Aq ,
where leaf

i -

elements in E , but
not in Ao

is defined to
be

Then , the
RHS will

consist of everything
( IP)

"

where A. B E E '

c for led
fi ) '

POWER SET
=
d
,
× , × ⇐ A

✓ x EB } .

for the
pus , it

will also be
the

bar the
common

intersection to
"

since no Af can
consist of

it -

A UB
Same , since

no
element in any

' "

Given a set X , we define
the power

set

Ag can be in
the RHS .

Hence LHS -
- RHS .

of X , or IPCX) , to
be the set

' If we want
to represent the

Hence LHS =
RHS .

union of
multiple sets ,

we can
use

(x) = I At A EX}
"

the notation rtgheesofhfs FEE →
ie (x) consists of all subsets of

× '

, ,

A
,

= A
,
V Az VA3

" "
V Ai '

← qgytraempresefatwed
in a

simplified case
including 0

& X itself .

where Ai , Az -
- Ai E E .

( 3 sets only
) -

eg if
X= It23 ,

-

; Hence ,
since

there exists an
t- I

CHOICE FUNCTIONSpcx)
= I 0, Ii} . 423 .

II.23 } .

correspondence
between

the elements of

' '

- we can
use choice functions

to define

of.FI??arId.?na?gtIofTYa set X is the ,

a
" product

.. for an infinite
collection of

¥
,

× ,
&

i
,
f : 41,2. . n} → Xi l fli) Exit

sets ,
which we can

denote
as

(the set of all possible
choice

number of elements in
it
,
and

( the product of
all

"

4 Xo} ,
,

where
I is

some infinite set
.

denoted by
1×1 .

the sets Xi )
functions)

eg if XIII , 2,33 ,
1×1=3 -

we can
write

We begin by
noting

that each

II.Xi = If
: 444 . - n}

→

.

Xi l fcitexi} .

PRODUCT
n-tuple , ex ,

,xz -
- xn) c- IIXi '

'

The product of
2 sets X

& Y ,

directly corresponds to some function
I
denoted as

XXY , is defined *

cays is known #
.

y g.nee f avows us
to choose I element from each

as the
"ordered where

f a
choice function

-

to be pair
" of × & y . f-

(× , ,×z
.
. Xn)

'

of our
sets ,

we
call

Xx Y
= 4cx.gs/xeX.yeY} .

Fx
,
,×. .

. .
xp

" I ' ' 43 -in} → Xi .

- We can
then use

choice functions
to denote

a

n
-
T-

; For n sets X
' '
" "

× '

T theft of all the set of
a"

definition
for infinite

sets :

we define
the product

to be

this function
directly

inputs are outputs is
the

corresponds w/ the natural
numbers union of all

Given a
collection

i
,
X,},

of sets,

×
, Xzxz

. . Xn = IT
,

Xi = 4411×2-' xn) l " ⇐Xi } '
(× , ,×z .

. xn ) from 1 to n . the
"

Xi
' '

sets .

*
ex
,,×.

. . xns is known
as "
""P"

and

( i ,
=
× , .

define

¥,×,
= If : I → Xgl f-G) EH} -

Xi is known as
the ith

coordinate .

f-
(x, Nz,Xz

- - Xn)

"

The cardinality of
the product of

n sets

* If Xo
-

- X Frei , Xy is written as
XI .

-

Xi , Xz
. - Xn

is the product of
the

if the input of
the function

is is

Cardinalities of
the products of

the n sets ;

*
2

the output of
the function

is Xi
'

A function fEf¥Xg is called a choice function on IX,}⇐, .

ie

IX.Xz
-- Xn I

=
lxillxzl

-- lxnl .



RELATIONS & FUNCTIONS
FUNCTIONS

Alternative definition of a function
:

RELATIONS
If RE

X.Y is a
relation ,

then R
determines

'

'

A function f
on X with values in Y,

-

A relation R
on 2 sets X dy

denoted by f
:X→ Y ,

is a

is any
set RE Xo Y .

a function f
if and only if

-

If xex & ye't satisfy ("9) ER ' relation f- EX
. Y such that

⇒µ, ,y ,, er
neR) , it implies y ,

-

- 92 .

Vice X ,
there

exists exactly yey

we say x
is Rted to y ,

described

using the notation

"

"RT !
such that

"'Y' tf
'

i s

,
In this

case , we let

range

domcf ) = I KEX / Cx, g) ER for some yey} ,
' Subsequently ,

the domain
and

domer) & ran CR) respectively ' - In this case ,
we denote the

value of y by fcx)
and write

of R ,
denoted by

and write y
-

- f-Cx) if
xedomcf ) &

CK, g)ER .

we defined by
y
-
- f-Cx) .

dom (R) = I xex I I yell 7 (x.g)
ER }

= icy C- YI 7- xex 7 (349)
ER} . -

By using our earlier definitions
for

relations
and applying

them to f ,

& ran CR)

observe
that

Lastly ,
the set

Y is known
as the codomain

i) domcf) =
X ;

ii , codomcft
= Y ' &

of R , or codonCR) -

iii ) range Cf
) : I y=fCx) /

KEX } .

' Note : if
X-- Y

-

- IR
,
we say R

is a

Additionally , define the graph off
by

relation
on

IR .

in graph (f)
=

'

g Cx , y
) = (x , FCK)) ) kex } .

*

COMPOSITION OF FUNCTIONSnotice graphCf
) E X

- Y .

r

THE VERTICAL
LINE TEST

'

'

i Let
X , Y and

Z be non
- empty sets

.

Then
,
let the

that f :X
→ Y & g :X

-77 .

- The premise of the vertical line test is as follows :

functions f- & g
be such

The composition
of g by f

is the function
R ,

where R

if , for any graph in the Cartesian plane , any
is a

relation .

germination:c:L:: hagtapiiterantnsottheea
"

* = gown
-

-
scam .

-

However ,
it is imperative

that ranch
E domcg) ;

function
.

otherwise , gcfcx))
cannot exist

-

-

'

Why?
Because

this implies
two or more y

values

value of X E dom (R) -
The test implies

are mapped
to the same

4 (key ,) , CK , Yz
)
, 4493) } E graph(R) ;

hence R
cannot be a function .

y=fC-x)

TRANSFORMATION OF FUNCTIONSREFLECTIONS
eg

as

I

÷:*:*::¥o÷n :

'

no:i÷:÷÷÷÷÷÷÷ :::S::X:c:¥
"

:
① f-(x) ta

corresponds to the graph off

② f,-×, corresponds
to the graph off y=

- fix)

shifted upwards by a
units .

being flipped through
the y-axis

.

✓

② fcxta)
corresponds

to the graph of f

shifted totheeft
by

a
units .

5-Htt
" '

°

°
* notice how if aco ,

Even &Opp
FUNCTIONS eg①

HH -- X
' " ""

q÷÷÷÷÷÷÷÷i÷÷÷÷:÷i:÷:*. in:÷
.

"

is ;÷÷: : next:*
:
" '

*to the right (for
②) by

a
-
. gcx)

-
-
X}

←
# x lat units

.

.

, A function g
is odd if Vx : gu)

-

- -9 ' " : is
odd -

ie its graph
is symmetric

about the origin .

-at

SCALING
' Let f : 112-712

.

Then :

① fccx) corresponds to the graph of f

being
" compressed

"

in the x direction

by a factor of c .

② cfcx) corresponds to
the graph off

being
"stretched

"

in the y
direction

by a factor of
C '

fax) , c
> l -

* similarly , notice if
aco ,

e.
. . in. :÷:÷÷÷:÷÷÷÷ .ec..
¥594,

' '

by a factor of
lat respectively .

×



FUNCTION CHARACTERISTICS 5- fan INVERSE FUNCTIONSy n

1-1 FUNCTIONS
G

n of
; If a

, - , & onto function f
:X→ Y exists '

in:S:c::÷t÷÷:.is.is
"

.
i ¥Ix÷÷÷÷onMe.

+www.eancn.onott.git-ix.cm
x, ,KzE

X & Kitkz,
then FCK,) t fcxz) .

be defined by

ie if V x

gcy)
=x if and only if

fcxky .

' Visually , a function f
is t- I if every

horizontal

*
note : gcy) is often

denoted by f
-'
Cy ) .

line crosses
the graph of f

at most once
.

; we say f
is

"

t- I on
an

interval I
"

if

'

If f-
'

Cy)
exists , we say f

is invertible on
X -

K, ikz
C- I & Kit

Xz ,
then FCK, ) t

fckz) -

y -
- f-Cx )

tf y
'

j f is
invertible on some

interval I if
there exists

eg
n

ONTO FUNCTIONS ←

every
horizontal line

a function gcy)
: FCI)

→ I by x=gcy
)

-
c- crosses the graph of

'

A function f
:X→ Y is onto if ran (f) = Y ;

-
if and only if

KEI & y=gCx)
-

f-Cx) at least once .

ie v. yoey , 7- xoex such that
""""

'

arap,yqwa
Inverse fun 10µg

'

Visually , a function f
is onto if every

horizontal line
crosses the graph

of f -

- If f is invertible ,
where f :X

→ Y, then the

✓

at least once .

graph of f
- t

is the reflection of fix) through the

line y=X
-

y
-

- f
-'(x)

.

. y
-

- X

INCREASING & DECREASING
eg n -

Y ,

✓
"t"

"

FUNCTIONS
i. ¥.si?:..a:::n::det:::::::iexiit::a

:

; ×

Then :

① f is increasing
if the , ,xzEI

: fcx,) cfcxz
) .

;

-

f is non
- decreasing if Vic, .kzc-

I : FCK ,)
E fckz) .

② -
if the, ,xzeI

: H"" > H
"" "

PULLBACK
③ f is dn9 "

-

; Let f
:X -' Y -

-
if Vx, ,xzeI

: FCK ,)
3 fckz) .

Then the pullback of
f is defined to be

a

,

④ f is non-increasing

on
I if either

① ,

② ,

③ or ④ is true .

the function f
- l
: (Y)

→ IPCX) by

⑤ f is monotonic
on
I if either

① " ③
" the '

f. ( By = i ,ce× I fade B } for each BE
PH) .

⑥ f is shicHymon-ic
-

The pullback of
a

subset B
tells us all

the

then it is HII.

elements in X mapped into B by f .

- If f is stnctymonoonic ,

MATHEMATICAL INDUCTION
PROOF BY

MATHEMATICAL
PRINCIPLE OF MATHEMATICAL

INDUCTION INDUCTION
-

'
'

- The goal of proving
by mathematical

induction

'

'

' The principle of
Mathematical

Induction

is to prove
a
statement pcn)

is true

in

:÷÷÷÷:÷÷÷÷÷:::* ÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷::
"

t÷÷÷÷÷÷÷:"PRINCIPLE OF
STRONG INDUCTION

-

'

'
- The Principle of Strong

Induction States

that , for any
set
SEN , if

&

① I C- S ,

② For each
KEN , if 1,2

. -

,
KES,

then ktl
E S

,

then S = N .

WELL-ORDERING
PRINCIPLE

' The well - Ordering Principle States that

every
set SEN ,

where
S F 0 ,

has a
least element

.



Chapter 3:
Real Numbers
ABSOLUTE VALUES

INEQUALITIES INVOLVING

ABSOLUTE VALUES

TRIANGLE INEQUALITY'

! Given any
x ,
a EIR ,

the absolute value of
x-a,

equals the distance between
,

; Another variant
of the Triangle Inequality

is

,
The triangle inequality

states that

denoted as Ix-d '
Ix-al .

- '

wen any
x. y , 't

EIR . Ix-H that, if "YER '

them on the number line
'

c- g
(# Ix-yl e Ix-z I

+ 17-91 '

iz-y , lxtyl f
1×1+191 .

×

Proof.
We assume

xfy
without any

loss ingenuity .
-

Formally . 1×1=4 !
.

Case I
: zcx .

⇒ Iz-yl > Ix
-yl .

i Iz -yl t Ix
-H > Ix-yl as 1×-2-1>0 .

Qed

case 2 : x ez e y .

⇒ Ix-yl = Ix
-2-It Iz

-yl .
aed .

Case 3 : z > y .
⇒ Ix-ylclx-

2- I .

" - Ix-yl s
Ix-2-1+17

-yl as It
-yl > O

-

cred .

Be

BOUNDS
For any

sets : 1ST ARCHIMEDEAN PROPERTY
① r is an upper

bound of S ,

if XE r
t × c- Si'

eg
s = [0,1 ] . .

-

:
The zap

states
that N has no

→ if a
is the

smallest such upper
bound

upper
bound in

IR i ie it is

( that is , if
xE8 V its'

then "
t )

( not bounded above .

it is called
the least upper

bound of S
, , ,

and is denoted
as Wbls) or SMS

) -

T T 4 an jpP% proof by
contradiction .

µ

→ if s contains
tubes) , d is also

called the
a lower gibes) Wbls

)
. suppose

y me IR
z Ks

V. KEN i

bound

By LUBP IT must
have

some
least

maximum of S
and is denoted by

→
I

maxes ) - y .

upper
bound

② p is a lower
bound of S ,

since 4 = tub ( N ) ,
o- I

FlubCN) ,

if X 313
✓ × ES -

such lower
bound

a & .)
→ if p

is the greatest pet) ⇒ F new 7 @- I <
n

(that is , if
X 78 F x

ES , then

ciple of
mathematical

induction ,

it is called
the greatest upper

bound of S

gibes)
or info) . → By the pin

n E N
⇒ ntl E N

.

and is denoted
as

13 is also
called the

However
this implies

that rent
I

→ if S contains gibes) ,

and so an
element of

IT is greater than
q ;

minimum of S and is denoted by
mines) .

a
blatant contradiction

.

LEAST UPPER
BOUND PROPERTY

2ND ARCHIMEDEAN
PROPERTY

-

'
- LUBP states

that every
set S C IR ,

is bounded above ,
has a

"

"

The ZAP
states

that
which

least upper
bound .

HE > O
: Fn E N

t O C the E .

GREATEST LOWER
BOUND

PROPERTY

Proof . V-E : F E 7 Ocean
,

n E N .

implies
' '

- GLBP States that every
set SCR ,

since
a

violation of this

E -

-
lab (N) ,

which cannot
be the by lap

.

which is bounded below . has a

greatest
lower bound .

If Os E ,
then

0 set .

If the E , then n > f- .

Is 0 BOUNDED?

- " we can
show 0

is bounded
above

Oct n n >I ⇒ Osten . Dg

or below
.

DENSITY OF IQ & IR)Q in R

→ Observe
that any

NER can

( ,
sa Q) 7 r, s

E (a , b) ;

be an upper
bound &

lower

DENSITY IN R - :

ya, be Kataeb
) : FREQ

irrationals are
dense in IR .

bound for ¢
.

" "
A set S EIR is dense in R if

'

ie the rationals
and

on -

fo EIR
E > O : F SES t (x

-E assetE.)

Why ? Proof by contradict
"

ie for any
OE IR ,

no matter
how small E is ,

suppose
r is not

an upper
bound for 01 .

Then it implies
that

aanwealgesmeft the
""

zxecf : X > & - "E" I
interval -

S
,

But 0 is empty
and has no

elements;

i . a
contradiction -



Chapter 4:
Sequences and Convergence

SUBSEQUENCES &
TAILS

SEQUENCES -

arena sequence Ians .

ke " '

'

'

Let Ian} be a sequence ,
and

the subsequence
In , ,nz

. . nu .
.
. } be a sequence

where

-

; a sequence
is simply an

ordered ' ist '

Ian}n7,
= clan , anti

- -
}

nie N & his hit ,
V ie N .

Eg
l
, 2, 4,7

. -

or 3,5, 13 ,
18 - - etc .

is called the
tail of Ian}

with cutoff K .

A subsequence of
Ian} is a sequence of

the form

To denote an
( infinite)

sequence ,
we

'

; yay, }
= Ian

.
.
an
. .
ans - - 3

use
the

notation

Ya , .az , - - , an .
. . } or dean}n7 , or fan} .

*
n =

the
' ' index

" of an
.

*
Some authors

use
round instead of curly

brackets .

METHODS OF
DEFINING

SEQUENCES
VIA RECURSION

LISTING
' '

- we can
use

recursion to define

'
'

- we can
use a

list to specify
a sequence

- ie ,
the formula

I

for an
utilises previous

terms
a sequence .

eg if an
-_ th ' etc ) -

(any ,
An-2

the sequence
is It, 'z , }. . - }

'

we can
also use a function

to identify eg
'

am,
= ant , 9=1

-

Eg
'

a ,=az= I , an
-
-an-Man-2

a sequence ,
which also allows us

to

fcn' ( Fibonacci )

plot its graph .
.

eg fan
's : (I 93 "

YI:}!:
'

prancing vis

n



qcn)
'

WHERE

LIMITS OF SEQUENCES THE LIMIT OF
PCI

DIVERGENCE TO
IN

Pcn), qcn) ARE
POLYNOMIALS

- normally , L is the
limit of Ian} as ma ' .

; we say
a sequence Ian} diverges

bot b ,
ntbzn

'
-.
+ bj

ni

F
to + & if VM > O

' #.

"

if V E > 0 : I N EN

⇒ µ z if n > N ,
then an >

M ' -
'

. Let an
=

cot Cin -
- + clan

z if n> N ,

Ian- Ll < E -

beta ,
j
-

- K

and write

sequence
is convergent '

, im
= to .

z IL ,
we say

the
n-soo

an

ying an
=/ O

,
sick

and write
-

similarly , we say
a sequence Ian} diverges Then

+ • ,

j > k
n bein > o

Iim an
= L - to - A if V- M - O ' / .

> k n
bi co .

n -70 ⇒ N z if n s, N ,

then an"
M

'

- * , j cu

and write
'

An alternative def? for
L :

Iim an
= -I .

L is a
limit of Ian} if

n→a

LIMIT ARITHMETICV-E > 0,
the interval

'

: Let Ian} & Ibn}
be sequences ,

and

( L- E , Lte
) contains a tail of Ian}.

moan
= L & nlimbn

-
-
M -

Then :

n

*
notice that

an=c
yn)⇒ c

-

- L '

all the purple
points are within

① VCEIR :(

we interval . ② wer
: tissue.

-
-
d '

③
n
ma cant

bn)
= Lt

M .

UNIQUENESS OF LIMITS
④ nlsinfcanbn)

= LM '

-

'

pi
'

: If Ian} is a convergent sequence ,
⑤ nhjm (÷) = Im if M¥0

'

* if M-
- o , the

limit may
exist , or

it

then it
has one and only limit L .

✓
might

not '

⑥ (Ctn : azo)
no > o )) ⇒Liman = Lt .

Proof by
contradiction

.

Suppose Ian
} has

2 limits
LIM ,

w/ Ltm
.

⑦ nfism an#
=L V- KEN -

ME LIMIT POINTS
egi Lime; -hi , - ii. 31=4-1

'
'}

Then,
both intervals

must contain a tail of
the sequence

.

-
"
An < c- R

is called a
limit point of

eg
' LIM ( Il , 'z , 2. f. 3. I

- - 31=40} .

⇒ at least one
element of Ian}

must be in
both

\

a sequence Ian} if there
is a

*note : in eg
'

,
a
limit point exists

intervals simultaneously ;
subsequence Tanu} of Ian} such

that

however since they are disjoint ,
this is

BIT the series
is divergent

:

impossible - 18
, ma am,

= 4 .

⇒ having
an unique

LP is not enough
to

-

"

We denote the set of
limit points of show

the sequence
converges

-

Ian} by LIM ( Ian}) .



LIMIT THEOREMS BOLZANO -WEIERSTRASS THEOREM
-

'

The BWT states that every
bounded sequence

SQUEEZE THEOREM has a convergent subsequence
.

' "
- The ST States that if

I! ! In:ge÷:L! ! #/Mm:b: peg. . assume ians is bonded .

By PPL , Yann} is monotonic,

where nu is a peak point
-

But Icann} is also bounded
.

Pweof .

\
: . By MCT , Yana} is convergent -

( Ligan
-

- L
-
- finsen

⇒ I N
EN 7 ( (L-E canc LTE) h

( L-E < Cnc Lte
)) tf n >N ,

CAUCHY SEQUENCES L Lt E
L-E

L- E c an a
bn a Cnc

LTE ,

⇒
.

.
.

A sequence Ian} is Cauchy it ¥17
Am

L- E C bn
C Lt E ,

and we
are

done .

He > O : INE N
t (Ian-aml

CE Vm,
n > N) .

I

⇒

-

All convergent sequences
are Cauchy .

* note , just
because a sequence satisfies

nfim(am,
- an)

-
-
O
,

MONOTONE
CONVERGENCE THEOREM

it does
not guarantee

it is Cauchy .

Puff Assume Ian} converges
with limit L .

'
'

A sequence of an } is monotonic if it

is either
non- decreasing

or "
"

Then for all
E >O '

CE , Let an =
It Itt

- i
+ th '

T
7- N z law-LICE V K >N -

⇒ n'sing cane .
- an'

'

- himachal
-
- o .

(the N
: ans anti

) V ( the N
: an>

anti) .

ie

Now let m ,
no, N .

Then

but Ian} is divergent
and not Cauchy .

'

The MCT slates
that , for a non-decreasing

1am- LI ,
Ian- Llc

Ez also .

sequence Ian
} ' an}) ;

By
the D inequality

① If {an}
is
bounded above , then nhjman =

tub (ie

Ian- aml f
Ian- 4+1

Ltamlc Ez + Ez
-

- E .

It an
= + A j

,

and we are
done .

② otherwise , n'Fa
ie Ian- aml

CE .

& For a non - increasing sequence
Ibn} ,

① If Ibn}
is bounded below .

then timbre glbccibn
}) ;

COMPLETENESS THEOREM
FOR IR

'

The CTFR
slates

that every Cauchy sequence
② otherwise , fiery bn

=
- D -

is convergent .

THE PEAK
POINT LEMMA Pet .

Lemma ① . Every Cauchy sequence
is bounded

.

for .

' "
A peak point

a sequence fan}
-

Proof . Choose a
No t[(n ,m3 No )

⇒ Ian-aml
Cl )

.

"

is an
index no C- N ,

such that

> an
V n > no -

get me. No
.

This tells
us

that
-ltano

ANO
Kano

^
"
z is

hence a fan -
a
no

" t t ¥$>

^
× ← peace point

of this seal -

g
An|' ⇒ Ian , c

laNott t -

i s si s
'

o

'

a 's

So
, if M

-

- maxilla, Itt , lazltl
,

- . lanoltl } ,
' Then,

the PPL
states that

every sequence
i
,
an} has a

tant EM ,

and we
are

done .

monotonic subsequence
d
, Anu} .

Lemma ②
. If a Cauchy sequence

has a convergent subsequence
where na is a peak point

-

dance} that converges
to L

,
Ian} also converges

'

-

to L .

Proof . Choose
No 7 (( m, n >

Not ⇒ tan-amk Ez )
.

Now, since Iana} converges
to L

,

7- ko t nuo
> No .

Using
the fact

that lance
.

- Ll c Ez ,

we now
choose any

n 7 No
-

Then Ian- Ll
c Ian - anu.lt/anuo-Ll--EztEz=e,

and we
are done

.

• Putting it
all together

:

→ If a sequence
is Cauchy , by ①

it is bounded
.

→ By
the

BWT, Ian} contains
a subsequence

Tanu}
that converges

.

→ Then by ② ,
Ian}

must also converge ,
and

we are
done .



SERIES DIVERGENCE TEST

-

. Given a sequence Ian
} . the

' "

If a series II. an is such that

formal sum liman ¥0 ,
n-soo

+ an
t . -

a
,
taz

- -

the series diverges
.

is called a
series .

*
Note : the test cannot

show a series

(
'
'

formal
' '

⇒ there is
no

numerical meaning

↳ the series Yet)
-

converges
!

Ceg an -_ In ) .

'

The Kth partial sum
Sk ,

where

KEN ,
is defined by

THE GEOMETRIC
SERIES

K

Sk =
Ean '

'

'

- A geometric
series is a series of

n =L

CONVERGENCE OF A
SERIES

'
the form

- '
- A series converges if Isk} converges ' II rn = It rt

r
'

- -

,

where r
is denoted as the ratio

where Su is the teth partial
sum .

I

of the
series .

-

" "

"

If it does ,
and Liff Su

= L .

£ '

The teth partial sum of a as

then we
write

is given by
a htt

z an
= L -

I - r

n -- o Sk = Fr .

Otherwise ,

we say
it diverges

.

'

fishy Su
exists (and hence

the

as converges
) if

lrlcl .

(otherwise IM
"l→& as ha

)

If lrlcl ,
then

Ern = Fr '

n =
0



Chapter 5:
Limits & Continuity
LIMIT OF A FUNCTION,

ARITHMETIC RULES FOR FUNCTIONS
-

'

For any given function f ,
and a ER

,

I as se approaches a ,
we say f has a limit L

-

Let f & g
be functions , and a c- IR .

or that L is the limit of fcx
) at x=a,

if for any tolerance E > 0 , we can find a Assume finna fcx) =L and fifa 94)
-
-
M -

cutoff distance
8>0 such that

Then :

Ifcx) - LICE .

if Oc Ix- al a
8
,

then
① If fcx)=c VKEIR

, fifa f-G) = c -

② the IR : fishy cfcx) = CL
.

We write xlimafcx)
=L to describe the above

.

③ fish [ fcx) tgcx) ]
= Ltm .

Y n

. .
=

.
. .
.
- - - - - - - - - - - -

- LTE
④ na[fcx) gcx) )

= LM .

•

f-Ca) -
- - -- - - -

- - -
. . - . . . . . - c - . .gg

- - -
- -

-
- - L

÷:÷¥- re ⑤ x'¥:!¥÷. Foi!! !!:c:#sexists . then ""

i '
,

M
( ! I

i. : :

i ! '

i ⑥ finna -4kW] = LT to> O '
" O '

:#x
a-S a a-18

LIMITS OF POLYNOMIALS
Notice how, if KE (a - S , a -18 ) , f-Cx) E ( L-E, LTE ) ;

- ÷ If pcx ) = 90+4×1
- -
t e. xn ,

then

ie if Oc Isc -al of , Ifcx)
- LICE .

* Also ,
note for any E

,
we do not have

to find
!i→mapc×)

= pca) -

the largest 8 ; we just need to find one value

^

ONE- SIDED
LIMITS

which works .

f-Cx)
we say f

has a limit L
'

'

on? * we
.si. . fmustbeaeneaonanopeninter

"' '" "
'

tea! ! :p:
"

an : if:p::3 :
" ¥.ie#.....:..:i+econtaining ×=a , except possibly

at * a '

we can find a
S >O

- ÷ - I. - - - - - - L-E

defined,
does net affect

the

and × > a
,

then I f-Cx ) - 4
< E -

,

② The value of fca
) , even if a ats

Notice Vxeca, ats) ,
→ we use the

notation fifa f-Cx) =L to

existence of a limit
or its value .

f- (x) C- ( L- E, LTE) -

describe the above .

③ If two functions
are equal , except possibly at x=a ,

So xhjmatfcx) =
a .

their limiting
behaviour at

a is identical '
-

similarly , f has
a limit L as

× approaches
a

ca similar example
exists fr

if x approaches
a from the left. )

fwmtheleft if

HE > O : IS > 0
such that if Oc Ix- al Cf ,

SEQUENTIAL CHARACTERISATION OF

and Kaa ,

then lfcx) - LICE
.

LIMITS

→ similarly , we use the
notation finna- f- Cx) =L

to

' "

Let f be defined on an open
interval containing x=a ,

except possibly at x
-

- a .
Then ,

describe the above .

[ = finna fix) ifa tiff fun) =L ' -

i Lastly , note that
* note : this is valid fr

where fkn} is a sequence
with Knt a & xn→a .

↳ too .

UNIQUENESS OF LIMITS FOR FUNCTIONS
xtismafcx) =L ⇐7 fismafcx) = L = fifa fix) -

SQUEEZE THEOREM FOR FUNCTIONS
'

"
.

If finna fcx) = L
and fifa Hx) = M ,

L--Mi

'
.

Assume functions fig
& h are defined on an open interval

I

ie , the
limit of a function

is unique .

* note : it is possible for

containing sea , except possibly at sea
.

STRATEGIES TO SHOW A LIMIT DOES L=±a .

Suppose , then ,
that VKEI , gcx) f fcx ) f

h (x )
,

and

NOT EXIST
magcx) = L= fijmahcx) .

-

To show finna f-Cx) does not exist , we
can

we can then imply fifa Hx)
exists ,

and fishy fcx) =L .

do either of the following
:

① Find a sequence Eun} with xn→a , xnta ,

but nfismnfcxn) does not exist ; or

② Find two sequences fkn}
& Ign} with

Kinta , sent
a & yn→

a
, ynta , and

n'Iff kn -- L & his,zyn=m,

but Ltm .



THE FUNDAMENTAL TRIGONOMETRIC
LIMIT

FUNDAMENTAL LOG LIMIT

'

-

"

×li→myh = o .

. ( for the + direction) .

clearly , pg s + a ④ t t .

proof .
observe oeh¥=2Y = ¥4"IIs ¥ Gina 'n¥at . '

'

tiffs = I -

"""

in
.

.

.

.

-

'

:
. sina.ws , q , tangos .

.
-

Yen
. gueeaetneorem . m.in#=o . . c.is '

÷÷:O.÷o;÷:
-

woe. .

- I

✓

But oligo # = fimowso = I . Hence figo sing =L . *
LIMITS AT INFINITY & ASYMPTOTES
LIMIT AT INFINITY n INFINITE LIMITS n

;

; we say a function
f has a limit L as *→*

.

; we say f
has a limit of d

as "
l

l
- M

ii.eye; e.

"" that "
" "

air;;ne:: at ::
" 17€- , I

*
note : we can define limits at - A in a

n 0,1×+1<8, then ft)
> M

i '

,
i i

similar manner . Notice the> N ,
* note ; a

similar deff
exists for if f

h"

:#
fix) E CL

-E,
HE ) -

a atf
-

we write L= Iihf f-Cx) to denote the above
'

a limit of
-N -

-

we write Liff, f-Cx)
= a to denote the Notice if see Ca , a

-181
,

then f-(x) > M -

-

; Also
,
if L=fifffCx) or

↳ FIFA"" ' above . n .

[ is called a
horizontal asymptote of H" '

-

-

; similarly , f
has a limit of if

a

.fm?o
,

I

moreover , it tmo .
⇒

na? :
"

:
'

I?
"" 'm '

II:
he

:c: ,IIiY a a µ÷imthen fix) approaches & i :

o e Ix-al es ,
then ft)

> M -

i ;
and write Liff Hx) = A ' i .

- i
*
again , a similar def

? exists for -N .

:#
^ Notice the> N , a-8 a

m -
fact > m .

'

we write Liga. f-Cx) =D
to denote the

Notice if xeca- S , a) ,
i
,

above . then fcx) > m .

I€7 -

If any of
,
!i→ma±fCx)

= to
occur '

we say
the line sea

is a
vertical asymptote

for the function f
.



CONTINUITY
SEQUENTIAL CHARACTERISATION

OF

'

'

A function f
is continuous at x=a if

CONTINUITY
finna f- Cx) exists ,

and finna fix) = f-
Ca) .

'
"
- A function f

is continuous at x -a ifad

' that converge to a
( otherwise , we say

it is discontinuous
at x=a,

onlyif all sequences
fkn}

or that x
-
-a is a point of

discontinuity for f-
)

satisfy nlimnfcxn)
= f-Ca) .

'

Alternatively , f
is continuous

at x=a if

HE > O : 78>0 such that if
Ix -ales ,

then I fcx) - f-Call
a E .

^

Notice if

#
fca) +E x c- (a-f , atf ) ,

- e f'" t '""-E' """ -

"
i :

i : :

-
a-g a atf

'

Lastly , f
is continuous

at x=a if and only if

I mo f-Cath)
= fca) .

TYPES OF
DISCONTINUITIES

FINITE JUMP DISCONTINUITY
* note : both jump

discontinuities and
at a point x=a

on f-

REMOVABLE DISCONTINUITY -

"
- A finite jump

discontinuity

is a point F-a on f
both exist , the oscillatory discontinuity

~

:
A removable discontinuity occurs when fiFa+fCx) and fifa- ft) discontinuities ,

* a
fcx) ,

the function
classified as ¥31

such that if
we let "a)

= "m

but ¥ma+fc×) # Liya.fc×) , & Ifi;na+fCx) - fish.HN/ is finite . Tay fo

' '

replace
"

f becomes continuous -
as there is no

eg fu,
= 5¥ .

( Hx) is discontinuous
at ×= - t ) '

eg f = !!' ,
,

Cfcx) is discontinuous
at "O ' )

the discontinuity to make FH)

y n
ft"

Notice that if we ny notice that we cannot
continuous

"

let fl-1) = Liff, f-Cx)
= -2

, fix) simply
' '

replace
"
the

F

i:#"

I
"

is:::::"iii.it.
'# dais:

'

iii." not .is.

i
- I

0 Furthermore , the
' '

jump
'' between the

µ Hence ×= - I is a
removable T-t

one-sided limits is finite -

discontinuity -
Therefore , we call the point at *

° a

✓ v

finite jump discontinuity .

INFINITE JUMP
DISCONTINUITY

at a point *
a " f OSCILLATORY DISCONTINUITY

' ÷
An infinite jump discontinuity

both exist , but is a point x
-
- a on f

occurs when finna; fix) & fifa- H" -

'

An oscillatory discontinuity

f+fCx) t finna- f-Cx) , and ltjmatfcx)
- xhjnalfcxll is infinite- where although f is bounded near

X -
-a
,
it does

not have a limit because of infinitely many

discontinuous at
x=o . )

eg fcx) = Lx - ( f-Cx) is oscillations near a -

Y " Notice , again,
we cannot

eg fu)
= sin (Ix) . ( fix) is discontinuous at

×=O . )

"
simply

' '

replace
"
the

! Notice that ,
near KO .

a dais:
"

I ti:""

"×, fixings hates, infinite
''

Then
, fyjmafcx ) = too ,

and

\ !
ran, fu, = - y ;

so ,
the

"

limp
"

Therefore , the point at * O

" is called an
oscillatory

is infinite .
' discontinuity .

Therefore , the point
at x=o

is an

infinite jump discontinuity .

CONTINUITY OF STANDARD FUNCTIONS
INVERSE FUNCTIONS

POLYNOMIALS
- - Earlier , we

showed
'that for any polynomial PG) '

-
'

-

If y=fC×) is invertible ,
with inverse

x - f
-' Cy ) ,

then if f-Ca)
-
- b and f is continuous on an open

C- IR .

then f
- l is continuous at

fismapcx)
= pca)

Fa .

interval containing x=a,

for all
XEIR .

y
-

-
b -- f-Ca) .

Hence , pcx)
is continuous

FH) Recall f-
'
Cy ) is the reflection of f-(x)

^
-

-

ca,fcb) , across y=X
'

SIN(x) AND
COS (X)

•
,

' f-
'Cy)

Hence , if there
were no

breaks

note sina.ro . ¥:
""" "

in t.ms?n:::eYc:::::Is
Then , finna sink) = Lifo (Sineath))

.

.

'

not produce
breaks .

= ht ( sin(a) wsch) + costa)
5inch))

,

,

'

, ✓

= sin(a) t O
- costa)

ex & In CX)
.

.

. Lima sin (x) = Simca) ' ath

and hence their fcx)
-
-
sink) is continuous ' -

'

j's
,

observe that finna e
"

= Life
= hhjmoceh -

ea )
'

'

Similarly , lxismacoscx ) = diff (cos Cath
) )

a

= I - e

= hhjnoicoscawsch) - sin
5inch)]

= ea
,

and hence the IR f(x) is continuous -

= cos Ca) - O - Simca)

i ' maws Cx) = costa) ,
-

since Inu) is the inverse function of
d
'

V' X EIR fcx) = cos Cx)
is continuous .

lncx) must also be continuous the IR .and so



ARITHMETIC RULES FOR CONTINUITY ON AN INTERVAL

-

We say f is
continuous on Ca, b) if Vice carb)

,

CONTINUOUS FUNCTIONS -

f is continuous .
- ÷
If functions f & g are continuous at x

-
-a
,

say f is continuous on IR . )
"
then : ( if Ca, b) = IR ,

then we

① ftg is continuous
at x=a;

continuous on
[Acb ] if :

② fg is continuous at
x -- ai

and -
-

we say f is -

③ F is continuous
at x=a , provided g (a) to

.

① f is continuous
txt Ca , b) ;

② may fcx
) -- f-Ca) ;

and

'

If f is continuous at x=a ,
and g is continuous

is continuous
at x=a .

at ×=fca) ,
then h=gf(×) ③ figg, fcx)

= f- (b) .

Proof . Let
f be continuous at

x=a ,
and g

be cont - at x=fCa
) .

Let h
= gfcx) .

Then
I fkn} ,

where xn→a ,
that satisfies nlifffcxny.ua).

However, since fcxn)
→ fca) ,

we can now imply

nfsinfgffcxn))
= glad] , by utilising

the Sequential
Characterisation

of Limits again
.

Hence Ising hcxn
) =

heal . *

INTERMEDIATE VALUE THEOREM
' "

Assume f is continuous on [a, b ] , and

either f-Ca) CTC fcb)
or f- Ca) > r > f-Cb ) .

Then 7- CE Ca, b)
such that fcc) =L

.

so , f-(a) cocfcb
) . Next

,
let ya

at ten -

clearly , cc yn
Eb , so f- (yn)

> O .

Pweof . We first assume
a- Oi

Since yn→c ,
i . fcc) = nliygnfcyn) z

O . (
So fC4=O ) -

let S=4XE[a ,b] I fcx) so} .

result
,

we consider
the

since SFO as AES & S is bounded above by b ,
To obtain the more general
functions gcx) : fcx)

- o and
'ncx) =L

- fix)

7- c= lubes
) -

in the cases fca) , y , fcb)
& fca, > q

, fcb) respectively -*
Then

,
I fkn} ES with xn→c

.

[a ,b] , and fun
) fo then ,

*note : this proof relies on the fact that
R is continuous -

since f is continuous on

the sequential
characterisation of continuity

shows that

f-Co) = nhjmnfcxn)
E O -

Cso fcc) E O . )

APPROXIMATE SOLUTIONS
OF EQUATIONS

THE BISECTION METHOD
ROOTS OF A POLYNOMIAL

'

'

In fact , the
method described to the left is called

'

; we can use
the IVT to show whether

the Bisection Method , which can help us find

a polynomial
has any

real roots .

an approximate
solution to fix)- gcx)=o

.

eg pay
-_x5tX- t . -

that steps :
we first note and so

① Let F-(x) = fix)
- gcx) .

p' ( x)
= 5×4-11 70

VXEIR :

such that
f- Cao) co & F-Cbo) > O .

pcx) is
increasing

V-xc.IR .
Find ao , bo

Then
, pco

) = - l CCO
) & pcl)

= I C > o) .

② By IVT,
aocccbo ,

where
Fcc) = O

.

( = Fld)
) .

Since f is
continuous

over [ 0,13 ,

③ Then , evaluate
Fcaotzbo ) .

the IVT implies Ic
t plc)

= 0 .

If F-Cd) & F-Cao) have
the same sign ,

a new interval [ a , ,b,] ,

Lastly , since pcx) is increasing
their,

let a ,=ao & b
,
-

-
d to obtain

c is the only real root of pH
) -

which contains a
solution to the ega -

therwise ,
let a

,
-

-
d d b

,
-_ bo -

'

We can also
use the IVT to approximate

O

④ We can repeat step ③ to obtain smaller

the value of a polynomial 's
real roots

.

intervals in which c is contained -

eg pix)
-
- xstx- I .

From above ,
we know

the root c. C- [ o , I ] .

Then ,
we can

test different
values in this

interval ;

since pctzko but
PC 1) 70 . )

eg pl 'z)=
-Yz co .

(so CECI , i ) .

We can then proceed
to test

the midpoints of

the successive
intervals ,

and repeat this process to

find smaller
intervals in which

c
resides .

Cg PC - 75) = - 0.0126
..
L O -

C.' . CE CO
-75,1 ) ) .

pl -875)
= 0.3879 . . 70

( . :c C- ( O -75 , 0.875 )

etc .



THE EXTREME VALUE THEOREM UNIFORM CONTINUITY
"

we say f
is uniformly continuous on S E IR if

GLOBAL MAXIMA &
MINIMA

HE > o : 78>0 such that if x. yes and

'

Suppose f :
I→ IR .

where I is an interval .

IX-yl CS , then
I f-Cx)

- fly) ICE .

Then ,

① c is a global maximum for f on I

SEQUENTIAL
CHARACTERISATION OF UNIFORM

if CEI , and f-(x) Efcc) VKEI
-

② c is a global minimum for f on
I CONTINUITY

if CEI , and f- (x) 3 fcc)
VKEI .

"

Assume fcx) is defined on
SEIR .

Then ,

the following
2 statements are equivalent :

THE EVT
i) f-(x) is uniformly

continuous on
Si and

'

- Suppose f
is continuous on [ a ,b] .

ii) if Inn} , Ign
} ES

with figs lxn-yn 1=0
,

Then 7- C , d
E [a , b ]

such that

f-( c) E f-(x) E f-Cd) Axe [ a , b] .
then tiff lfcxn)

- fcyn) 1=0
-

UNIFORM CONTINUITY
ON [a,b)

Pref .

Step l : we show f- ([a,b]) = icfcx) txt [a ,b3} is bounded -

'

'

"

If f is continuous
on [ acts] , then

How ? Assume this is not the
case .

f- is also uniformly continuous on [ a ,b] .
Then the N 7xnE[a,b) such that Iflxn

) ) > n -

since fkn}c[a,b] , BUT
tells us IfXnu} which

converges
to some point te [

a,b3 .

Then,
the SCC tells us that fcxnu) → fct) .

However ,
this is impossible since Iflxnu

) I > nu ,

so I fcxnul} is not bounded . Hence f is
bounded on Carb]

-

*

Step 2 . We show Id c-[a,b3 a fcxlffcd) -Vxe[a,b] .

How? First
,
let M=lub(cifcx) I see [a ,b] ) .

Then
,

V-new : ( M -In cm) ⇒ 7- xnE[a,b] t Ifcxn) C- (M-th , M)) .
(since f is continuous

- )

By BWT,
I ixnu} ,

with Knut dE[a ,b]
.

Then
, by SCC & the squeeze

Theorem .

f-(d) = Liff fcxnu)
= M .

-

'
- f-Cx) E fld) VICE [a ,b] , and we are done

. #

Step 3 . We show 7- Ce la , b ] a fcc) f fld
) the [a. b ]

.

How? Let L=glbC4fCX) / XE [
a,b] ) . We can show

Ice[a, b) such

that fcc) =L ,
using a

similar argument as stage
2 .

i . fcc) f f-Cx ) Efca) .
VXE Laib] . 12

CURVE SKETCHING (PART
1)

'

"
-

we can use a strategy to sketch basic curves :

① Determine the domain
of f -

② Determine whether f has any
symmetries ( ie if f

is

even or
odd . )

③ Determine where f- changes sign , and plot these points.

④ Find any
discontinuity points for f

.

⑤ Identify the nature of these points , and
evaluate

the relevant one/ two-sided limits at
these points .

⑥ Draw any vertical asymptotes
-

⑦ Identify whether any
horizontal asymptotes

exist ,

and draw them .

⑧ Sketch the graph . If needed
, plot some sample points

.



Chapter 6:
Derivatives
'

: we say
the function f is differentiable at t

-

-a

if fcath) - f-Ca) exists ,lim-
h-70 h

and denote the
above

limit as f
' Ca) .

THE TANGENT
LINE

I Assume f
is differentiable at x=a .

Then,
the tangent line

to the graph off at
x=a

is the line passing through Ca, f-Call with slope
f-
'Ca)

.

'

It follows that the equation of the tangent line

is
y
= f-(a) t f-

'(a) ( x -a] .

*
note : we cannot define

the derivative as
' ' the slope

of the tangent
line !

' '

DIFFERENTIABILITY VS CONTINUITY

' "

If f is differentiable at
t --a
,

* note that
- continuity doesnotimply

f- is continuous
at t=a -

- differentiability !

proof . Since f is differentiable at
th
'

( eg fc×, = 1×1
at x- o ) .

( im fLath)-f exists .
h -30 h * note that

' '

sharp points
' '

are not differentiable .
Let h=t-a .

Then we
also know

f-(t ) - fca)Iim - exists .

+→ a t - a

However , since the
denominator approaches

zero,

the numerator
must also approach zero ; ie

f ma Cfcf) - flat )
= o

or fish HH
-
- flat .

This
,
in ten , implies fcx) is continuous at a . #

THE DERIVATIVE
FUNCTION

'

'

We say f
is differentiable on an

interval I

if f-
'Ca) exists VAEI .

"

Then ,
we define the derivative function f

'

to be

f-
'Ct) .

- align
fCtthl- .

h

( f
'( t ) is simply the derivative of fat

t

for each TEI
- )

"

Leibniz
Notation :

note
that

df
DI

= FtCf ) = f
'

,

and

dfdF/×=a = f-
' Ca) .

HIGHER DERIVATIVES
The second derivative of f ,

denoted as f
' '

,

is defined
to be

f
''
= da Cf ' ) .

Similarly ,
the 3rd derivative of f , f

' ' '

,

is defined as

f-
' '
'

= ddxcf
''

) .

In general , Fn 71 ,

fcnt
"
= da ( fu

) )
,

and fcn
)
is called

the nth derivative of f
.



DERIVATIVES OF ELEMENTARY

FUNCTIONS x
a× & e

CONSTANT FUNCTION -

'

fi; we can show if f- G) = a"

-
.

we can show if f- (x) =L for a constant CER,
then f. (×) = Ca ( ax) , where Ca -- f-

'
( O) .

axth - ax
then f-

'

(x) = O VXER . puff . f'(x) =
lim -
h-70 h

ipwof. f'(x) = thing fCa+h)- = Iim a×Ca
h h-70 h

=
lim = ax . hiyoah
n-70 h

= ax . f
'
( o)

= O . 18

: . f' (x) = Ca - (
a×) . DE

LINEAR FUNCTION
'

Then
,

' '

e
' '

( = 2-718 . . . )
is the unique

"
Let f- (x) = mxtb

.

Then f-
'(x) = m HXEIR.

Value such that if f- Cx) = ex,

= LimofCath3-fcagP@f.f' Ca) h then f-
' ( O) = I -

(matmhtc)
- (mate)

= LimoT '

; we can
also prove hiFoeh = ' '

= lim MI
pµf . If fcx

) = ex ,
then f-' ( 0=1

-

h-70 h Oth
- eo

I = time
= M . Dk ⇒ h-70 h

SINCX) & cos (X) : .
I = oe .

Ba

'

First, we can derive that thing wschh# = o .

'

Finally , we can prove if fcx)=e×,

pref. hi;mows = him (ws")(%%Y) then flexi - ex .

Puff - f
'(x ) = hhjmo e×+h

= his I
= movie

-

- hi;niid = i. ex

= Liaising ) . first:siY¥ ) idacexi -- ex
.

an

= 1 . O
. : as h-so ,

Sindh) → ° & wslhtt'
-72 '

Additionally , we can show if f-Cx)=a×,

then f
' (x) = ax Inca) .

.
:
limws = O . Da

peg . fc×, =
ax = Cena'T = e

"""!
h-70

fix)= sink
)
,

then
: . fica, = thing a-a×

'

Now ,
we can show if u

= him case, -Lah )
f-
'

(x) = cos( x) .

sincxth) - sink)

pref . f' Cx) -- LifoT = hignoca.es/ehmcaL-t)
( sin (x) wsch) t

cosh) sinch)) - sink)

=
lim-
no h = feign case , cineaste"! )

= diff ( since)(wsch ) t lhismocwscx)) (since
)
)

= 1 . a

" Inca )

= sin (x) - O t Ws ( x) - l
: . f'(x) = a

" Inca) - B

i . dd×( sin (x)) = cos (x) . Dh

'

Similarly , if fcx) = coslx
)
,
then f'(x) = - sink) .

coscxth) -
coscx)

Pewof . f-
' (x) =

lim-
h-70 h

( cos (x) cos Ch)
- sin (x) 5inch)

) - cos (x)

=
lim-
h-70

h

= hirnocwscxs)(wschn ) - hhjmo ( since> (singh
)
)

= O - cos (x) - I . sin (x)

i da, Cwscxll = - sin (x) . pg



LINEAR APPLICATION
APPLICATIONS OF LINEAR

'
"

I Let y .
- fix)

be differentiable at x=a .

APPROXIMATION
Then,

the
" linear approximation

"

to f at

* Lafcx) is also called

×=a is
the function

the
" linearization

"

or ESTIMATING CHANGE

Laf (x) = f-Ca) t f-
' (a) (x-a) . the

' '

tangent
line approximation

"

"

Assume we
know fca) at some point a .

to f at x=a
.

La to figure
out what

*

Why is it a linear
"approximation

"

?

to a
,
we

we can use

of fu,
we can expect

change in the value
→ for values of x close

if we move to a point x
,
near

a
.

have that
f-(x) - f-Ca)

f-
'Ca) = Fa - -

In other words , we want to know what

be if we change the

SO (x-a) f-
' (a) z f-(x)

- f-Ca)

by = f- ( x ,) - f- Ca)
will

or fix)
I f- (a) t

(x-a) f'Ca) .

Variable by
Dx = x ,

- a units .

La , we find
that

'

There are 3 main properties of La :

'

Subsequently ,

after using

① Lala) = f-Ca) .

by = f- ( x ,)
- f- Ca)

② La is differentiable and La
' (a) = f' Ca) -

= La ( xp
- f- Ca)

= ( fla) + f-
'(a) ( x, - a))

- fla)
③ La is the only first degree polynomial

with properties ① & ② '

= f'(a) ( x ,- a)

: . By I ( f'(a)) DX -

ERROR TO LINEAR
APPROXIMATION
at x=a .

QUALITATIVE BEHAVIOUR OF FUNCTIONS
'

Let y=fCx)
be differentiable

Then, the error in using
linear approximation

'

We can
also use La to study

the

to estimate fcx) is given by
"

qualitative
" behaviour of functions ;

error =
lfcx) - Lak) ) -

e.g . y= e
- ×?

'

There are multiple factors that affect

First
,
we begin

with a simpler function ;

the error in linear approximation :
ie h(u) = e

"
.

① Generally , as Ix-al increases ,
Then by definition

h(o) = h' ( 07=1 .

the error in La increases .

② Generally , the more

"

curved
"

the so Longa, = , + u is the tangent
line

to hcu) at coil) -

graph is at x=a
,

the greater
the

e.
U re Itu if u is near

0 .

potential error of La - Hence
then

Y ^
5- Lak) -

However
,
if x is close to O

'

* note : I -X
'

is NIT the linear

""" ÷÷÷;¥÷ -go.is.ve?.eIos:I-x7wesettnatarrwximan:nts=e" .

"

; dcufrvtfwe ,
y
= e
- x
'

= he- x
' ) = I - ×?

I
× *

so y=
1×2 is a very good approximation

a K
,

to
y
-
- e
-×
'

at values
close to

O -

→ alternatively, we can use
this

more precise definition :

if I f-
"

(x ) / L M -V×eI , where I
is an

interval that
contains a point a,

then
Ifcx) - Law> I f Mz (

x-a)?

*
since f'

'

(x) is a
measure of the

"

curvature
" of the graph .



NEWTON'S METHOD ARITHMETIC RULES OF

the linear approximation DIFFERENTIATION÷ Newton's method uses

to a differentiable function to approximate

the solution to an equation of the type CONSTANT MULTIPLE RULE

Let f be differentiable at x=a .

f-(x) = O .

Then if hc×) = cfcx) ,
then h'(a) = Cf

'
Ca) .

(Cf)(ath) - Ccf )
Ca)

METHOD pzof.ccf)
'

ca) = lim-
h-70 h

' First, pick a point x
,
that is

point c with fcc)=O -

= c nlijmo fCa+h)
reasonably close to

a
n

we can
use the

IVT to help us find
*

; . (of,
' (a) = Cf

'
Ca) . BE

such an
X
,
.

'

If f is differentiable at x- Xi ,
then we SUM RULE

"
Let f & g

be differentiable at x=a .

Can approximate f
near

x
,
by using

Then hcx) = f-(x) tgcx
) is differentiable

and h
'C) = f-

' (a) + g'Ca) .

f-(x) I Lqcx)
= f- (x ,) t

f' (xp ( x
-XD .

a

at x=a

( ftg)Cath)
- ( f-+g) Ca )

Since f-Cx)
x Lx

,
Cx)

,

we can infer Ho) I L× ,
co) .

Pioof . Cftg)'(a) =
lim-

we can
approximate c by ×"

n-so he

f-Cath) t g
Cath) - Ha)

- gca)
So if f-

' (Xi) 1=01
= lim#

where L×
,

( Xz)
= O ' into h

we will get
that

= Iim fCathL + II;no9ca+hL)'

After expanding
and simplifying , no

×z= ×
,
-

,

and so
this is our next

, . ( ftp.ca) = f'Ca)
t g

' Ca) - Dh

Lx , CX)
= fcx,) -1 f'Cx, ) (x-x, )"

step
"

. PRODUCT RULE
^

f
' ÷ Let f & g

be differentiable at x=a -

x;
X
,
- ft ft" " ' - '

9
Then hug = fc×ygc×)

is also differentiable

(t••# at xj-qaj.anfd.ca, gca, + fcasg.ca, .

Puff- Cfg)
'
(a) = Iim Cfg)Cath)-Cfg

h-70 h
✓

f-Cath) g Cath
) - f-Cath) gca) + f-Cath)gCa) - Ha)gCa)

= limp
we continue this process indefinitely'

↳ o n

which results in a sequence IXN}
= limfca.in/9ca+hL-9cat-/+lnigggcay(Hathln--fa

)

)
h-70

Such that

FAI VNEN >

: . ( fgjca) = fca) . g' Ca) t f-
'Ca) - Sta) - Dh

Xn+,
= Xn -

f
' ( xn)

point
at which the tangent

RECIPROCAL RULEwhere Xn+, is the

(xn , f-( xn
)) crosses

the

line to f through .

'

s Let g
be differentiable at ×=a .

If g. (a) to ,
then hcx) =¥, is

x-axis .

differentiable
at x=a also and

Ultimately, we will observe that (generally)
-g' Ca)

( with f-(c) = O -

n' Ca) = -
dcxn} converges

to a

[ gca>72
-

Perf . (f)
'

(a) = fishy f¥-fca
h

= Iim fCath)
h-70

hfca) f-Cath
)

f-Cath)
- f-Ca)

= - limT
- Lifo fca¥fCaI

h-70

= - f
'Ca) -

[¥2
- i f is continuous at x=a

: . (f)
'

(a) = -f'
[fca) ]2

. The

QUOTIENT RULE
' ÷

Let f- & g
be differentiable at x=a .

Then if gca) to ,
hcx)=fgc¥ is

also differentiable at a and

h'(a) = f)-f#a
)

[ gca)]Z
.

Proof . (F)
'

Ca) = ( f. gt )
'

Ca)

= fca) - (f)
'

Ca) t f-
'
Ca) . (f)la) ( by the product Rule)

-g'Ca )
= f-Ca) .

Ez
t f-

' Ca) - gta, ( by the Reciprocal Rule)

= f-
'
Ca) g ca)

- fca) g
' Ca)

i . ( Ig )
'

Ca) # . Be
[g ca) ]

2



DERIVED RESULTS
POWER RULE
"
- Assume that TERI Io} and f-Cx)= xd.

Then f is differentiable and

r- I

f-
'

( x) = TX

wherever
xd" is defined .

POLYNOMIALS
'

'

i Let pcx) = aotaixtazx
-
t - - + anxn.

Then p is always differentiable,

and p' Cx) = a ,
t 2azXt3azx2+ . .

+ nanxn
-!

CHAIN RULE
'

'

Assume y=fCx) is differentiable at
x=a

differentiable at y=fCa) .
I

and 2- = gcy) is

Then hcx)= (go f)
(x) is also differentiable at

x=a and

h' (a ) = g
' ( f- Ca)) . f-

'
Ca)

.

*
this can

also be written as

dat, = duty . dat .

'

We can also show

Lah ( x) = Lfa, o LI Cx) .

"

UPGRADED
' '

VERSION OF

THE CHAIN RULE

' ÷
Assume f : I -7112 ,

where IER ,
and

g : -5-7112 , where FCI) E J ,
and that

I & J are open
intervals such that I

contains some ×=a
and J contains f-Ca) .

Then
, if f- Cx) is differentiable at X=a

and

gcy ) is differentiable at y=fCa) , necessarily

hcx) = (go f)
Cx) is differentiable at

x=a

with h'(a) = g' ( f- Ca) ) ( f
'Ca) ) .

PIF . let § : J -7112 be defined by

gey, =/
,
""yIffa" , y # Hai

g
' ( fla))

, y
-
- Ha) .

Then
,
since fla) EJ, so

yefiffa, Olly) = lim 9Ha" = gicfca)) ,
y→ f-Ca) y - f- Ca)

and so 0cg) is continuous at y=fCa) .

Next
, Hye J :

gcy) - gcfca) )
= fly) [ y - fca)) ,

even when y=fCa) .

Hence glfcx))
- gcfca)) = 0/(4×1) [f-Cx)

- fca)] thee I
,

since FCI) CJ.

gcfcx) ) - gcfca
)) .

Therefore lim#
= Isma 0CfCxDIfCaD

x→a x - a

=xhjma0cfcxD-fcxf-afcal-J-lxhjmaOCH.nl) . ( finna )

= (fca)) . f-
' Ca)

. :(go f)
'

(a) = g' ( f- Ca)) . f-
' Ca) . Da



DERIVATIVES OF INVERSE FUNCTIONS
ALL CONTINUOUS FUNCTIONS THAT ARE l- l CONTINUITY FOR INVERSE FUNCTIONS

ARE EITHER INCREASING OR DECREASING s
.

suppose f :[
a,b]→R is continuous and H

,
with

'

'

:
we claim that if f is continuous & H on [a' b]' f( [qb ] ) = [ c,

d]
.

inverse function of f on [ Gd] ,
then f is either increasing or decreasing on [acts] .

let g
:[ c. d ] →

[a. b] be the

proof . Suppose this was not true -

c , ace
such that

either
Then g

is continuous on [c'd ] .

Then Ic , d.etta , b
] with

or decreasing on
[9. b)

Pdf . since f is either increasing
① f-(c) C fld) & fld) > Heli

or

hence g is also either increasing or decreasing .

② fcc) 7 fld
) & f-Cd) s He

).

So
,
as g

( [Ccd]) = [a. b ], thus g is continuous on [Cid ] .

W/o loss in generality, assume Case I is true .

Then by the
IVT

,

I TEIR
such that

f-(c) L 4C fed
) & fee) c X

C fld) .

THE INVERSE FUNCTION THEOREM
& t Ecd, e)

such that

Hence 7- SE (Gd ) '

s

,
Assume y=fc×) is continuous and invertible on [Gd]

fcs) = <= fct) since f is anti""
""

with inverse ×=gcy) , and f is differentiable
if f is I -1 . *

but this is impossible at a C- ( c , d) .

If f-
' (a) to , then g is differentiable at b -- f- Ca) ,

MONOTONE CONVERGENCE THEOREM FOR
and

gifts) = ÷, = f÷bT) -

FUNCTIONS
Moreover

, Laf is also invertible and

' " Suppose f
is increasing on

[a. b] . Then :

① ×y;nffc×) exists the Laib ) , and finch = 9lb ( Ift" txt "'D}) - ( Laf )
-'
( x ) = Lf Cx) = LIA, Cx) .

② 7- fix) exists Vce (a, b]
,

and jiff, = lub(4fLx)/xE[a.
c ) } ) . Proof . let gcy) be the inverse function of fcxt .

Then g' (b) = lion gcy
) - gcb)

pyof . We prove ① as the proof for ② is similar - y→b#
= Iim gcy)

- gcb)

let 5=4 fcx) / x ECC, b] } . y→by¥

Then S is bounded below by Hc) -
= ( im X - a

x→ a ¥fca,
'

.

'

g is continuous at y=b

let L=glbCS), and let e > o be arbitrary . ,
= lim -

Then since ( Lte) is not a lower bound for x-iaffxx.tw )
d C- (c , b ] such that

S
,

hence there
exists a

=
I
f-
'(a) .

( E f-Cd) C LTE .

DERIVATIVES OF INVERSE TRIGONOMETRIC
SO if x ECC, d ) ,

then

Lf f-Cx) ( fld
) s LTE ,

FUNCTIONS to calculate the

implying ¥7, fix) =L . DE

We can use the Inverse function Theorem

derivatives of inverse trigonometric functions.

CONTINUITY OF MONOTONIC FUNCTIONS

[a
,
b] . Then f is continuous da (arcsincx)) = ¥-2 .

:

suppose f- is increasing on
'

for instance ,
we can calculate that

on [a,b] ifandonY
pzof . Yue [y , , ]

,
if y=fc×, = arcsincx

) & ×=gcy)
-

- sing) with yet-II. It] ,

f- ( Ea, b] ) = IfCx)/xE[a. b] } = [fca), fcb)] . then gcfcx)) = sin (
arcsincx) )

= X -

Peroof . Since f is increasing . each xE[a. b] satisfies
By the chain rule

,

f-(a) E f Cx) E fcb) , g
'

(fC×)) f' (x)
= I

.

I
and so fca) C Tcf

Cb) .
-

and so f-
' (x ) = g' ( f-Cx ) )

we first prove the forward argument -

and that f-(a) etc fcb) . =
1-

Assume f is continuous '
coscfcxl)

By the
IVT

,
ICE la

, b) such that fcc) -- 4. ,
=

-_f([a. b ) ) = [fca) , fcb) ) , as required . # VI- sincfcx))
Thus

Then
,
we prove the backward argument .

s
.
f'Cx) = ✓¥. Da

Assume f is discontinuous at some point CE Carb) .

Then fine fu) = L L M
= fifth) -

However this implies [4M] h f- ( Ea, b)) = Ifk)}
,

and so f-(Ea,b)It Efta), fcb)] .

Moreover
,
if f is discontinuous at

X=a
,

then f-Call M -

- fi;zfCx) .

So Cfca ) , m) h f-( [a. b]) = ¢ .

Similarly , if f is discontinuous
at × -- b

,
then fishy- fix)

-
- Ldfcb).

So CL , fcb))
n f- ( [a.b) )

= 0.

Hence if f is not continuous ,
then FC Ea. b ] ) I Efta), fcb)] . ④



IMPLICIT DIFFERENTIATION RELATED RATES
"
we can use derivatives to solve

' '

related rate
' '

' :
we can use implicit differentiation to

problems ; ie problems involving a mathematical
' '

relations
' ' that are not

find derivatives of
relationship between the respective rates of

written in the form y = f- (x ) .
change between various quantities .

eg x2ty2 =L .
eg Itis given

that pV= KT,
where p= pressure ,

V-- volume
,
k -

- constant , F- temp . of the gag .

C. dax ) 2x 't 2yddI× = O -

i . dat, =
-

Iy .

we know pV= KT.
WHEN NIT TO USE IMPLICIT

Differentiating both sides w.r.tt, we get that

DIFFERENTIATION pd¥ + LIEV = Kdaf .
-

we must always ensure the implicitly defined
But since p is constant, hence dai -- O -

function is defined before we implicitly Hence p date = Kddi .
differentiate - Then

,
as duty = + zk° and did = -10.001 m's

"

,

eg
XY + y

"
= - I - XZYZ -

we get that P
-

- 2000k -

we can substitute this back into the original
⇒ date, =

-2×5-4×32
✓ so .H4m3 .

( using
the fact

4y3t2x2y
-

formula to get that

that -1=34810. )

BIT LHS 30 and RHS E - I
,
so the

inequality is neve satisfied !

LOCAL EXTREMA
'

'

I A point c is a

" local mmum
' '

for

a function f if there exists an

open
interval ( a. b ) containing c

such that fcx) E fcc)
theca, b ) .

Similarly , a point c is called a

" local

MINIMUM
' '

for f if there exists an

open
interval (a. b ) containing c

Such that fcc) E f-
Cx) V-xc.ca, b) .

THE LOCAL EXTREMA
THEOREM

'

The Local Extrema
Theorem States that

if c is a
local minimum

or maximum for f

and f-
'

Cc) exists
,

then f
'(c) = 0 .

CRITICAL POINT
' "

A point c in the domain of a function f
"

point for f if either
is called a critical

i ) f-
'(c) = 0 ; or

ii ) f'Cc ) does not exist .

'

Critical points are generally
local extrema

.

exception : eg fix)
-_x3

f-
'
( O) = 31032 = 0

,

but X=U is not

a local extrema for f .



Chapter 7:
The Mean Value Theorem
'

Assume f is continuous on Cain and APPLICATIONS OF MVT
f- is differentiable on ( qb) .

exists a
a- Carb ) ANTIDERIVATIVES

Then there always .

given a function f , an antiderivative is a function F

such that
such that F' (x) = HX) -

f-
'
Cc) =
fCb)#a)

*

if F'(x ) = fcx)
VXEI

,
we say F is an antiderivative

b - a
-

T - for f on I .
instantaneous rate of

T ' '

average
" rate of change

change at x=c . over ( a. b ) .
THE CONSTANT FUNCTION THEOREM

ROLLE 'S THEOREM
'

Assume f 'lxt=o
the- I .

Then there exists an d such that
'

Assume f is continuous on
Ea, b] ,

'
fcx) =L V-XEI .

f- is differentiable on Ca, b) ,
and

Proeof . let x
,
C-I be arbitrary .

let a-fix ,) .

f-(a) = O
= f-Cb) .

Then
, for any

other XZEI , we know
that

Then there exists a
ceca,b)

such that

( by MVT) there exists a ceca, b)

fyc) =
fCb)-f = O ,

b - a
such that

f-
'(c) =

f-(Xz)
- fcx, )

Pneof . -

case ① :
f- (x) =O

Vice [a ,b] .
Xz
- X

,
.

But since f-
'(c) = O

,
we get

that fix,)=flXz)=4 .

The claim follows trivially .

such that
f-( Xo) > O -

Thus f-( x) =D VXEI
. Dk

case ② : 7- Xo C- [
a,b]

Then necessarily the global
maximum occurs

at some point x
-
-ceca, b) by EVT . THE ANTIDERIVATIVE THEOREM

also a
local maximum,

' "
Assume that f-

'(x) = g'(x ) the-1 .

But since c is Then Idek such that

it follows that f.cc/=o ,
and we are done .

f-Cx ) = gcx)
+9 VXEI .

case ③ : 7- Xo E Ea,
b ] such that f- (Xo) CO .

Proff . let hcx) = fix)
- gcx ) .

Then h' (x) = f-
' (x) - g' (x)

= O thief
,

Then necessarily the global minimum
occurs

at some point x -- ceca,b) by EVT.
and so the constant Function Theorem tells

But since c is also a local minimum'
us that za such that hlx ) = t -

hence f-
'(c) =D , so we are done . ④

Hence fix) - glx)
=4

,

or f-Cx) = gcx)
-19 HXEI.

'

We can use Rolle 's theorem to prove

the Mean Value Theorem .

pzof.at had
= fix) - ( f- Ca) + Hb)bIta ( x -al) . LEIBNIZ NOTATION

gcx) = fla)
t ftp.L-fa-cx-a) is linear

,

"

we denote the
"

family of anti derivatives
' '

off

Note that by ffcx) dx .

and gca) = fca) & gcb) -- fcb) . = -
l l the

"

integrand
"

-

So
g passes through Ca

, Ha)) and Cb , f- ( b)) . indefinite
integral

But since hcx)= fix ) -glx) ,
it implies

hcx ) is coff )

the vertical distance between f and
the common ANTIDERIVATIVES

' : Here are the antiderivatives of several

secant line .

basic functions
:

( we can use differentiation to verify )

① Jx4dx =
t C

,

at - I

② J# dx = In ( txt ) t C

subsequently , since f- is continuous on Ea, b] ,

differentiable on Ca, b)
and ka ) =0=hCb"

③ Jax dx = ,n÷, t C

+here must exist a point ④ J since) dx = - cos Cx) t C

by Rolle's theorem

( C- Carb) such that h' (c) =O .

c with ⑤ ✓ cos ( x) dx
= sink) + C

But h'( c ) = f'Cc) - g
'Cc )

⇒
o

= f.( c ) - fCb¥f I
I%&th Tope ⑥ f see d× =

tank) -1C

fCba)
b -a .

⑦ f dx = arctancx) t C

and hence f'Cc) = Hba
)

b -a - Dk
⑧ f¥T dx = arcsincx) t C

⑨ J dx = arcwscx) -1C .



INCREASING✓DECREASING FUNCTION THE FUNDAMENTAL EXPONENTIAL LIMIT
' "

- we can show that tiff ( it's)n=e .

THEOREM 1

Puff . First, let f-Cx) x -Ix? Then, if × > o
,

we can divide

-
"

Let I be an interval , and XIIXZEI be arbitrary- gcx)= inch) ; and a, , the terms by × to get that

h(x) = X .
I - Lz × c

INCHX)

Assume X , cxz .

Then ! Then O= fco) = gco) -- hco) , I
< t -

① if f' (x) > O VXEI
,

then f-(Y) < f-H2) -

and f-
'

(x) = I - X
,

In particular , if x= In , then

g' (x) = ¥ and
. ie f is increasing on I l - In a nlncltnt) c l .

h
'

(x) = I -

then f- (x , ) f flxz
)
.

② if f'( x) > O VXEI
, so

, if x> o ,
then ⇒ I - Inc in (( Itt)

"

) C l -

o ie f is non - decreasing
on
I

'

g. ( x) c fo = I = h' (x)
,

then f- CX,) > fcxz) .
③ if f'(x) L O

HXEI , and since Ctx)CH×)
= I - ×'Ll

, ⇒ et
- In

c ( * Lnyn c e .

- ie f is decreasing on I ' so f' Cx) = I - X s ¥ = g'Cx) .

④ if f.(×, so
f×eI

,
then f- (Xl) 3 f(×2) . Therefore f' (x) c g' (x) c h'(x ) thx > 0 , and so But as n -70

,
I -In→ o, so e

'- the
,

by the Increasing Function Theorem hence by the Squeeze Theorem,
- ie f is non - increasing on I .

f-Cx) c gcx) C hcx) Vx > 0 .

nhjnf ( Itf)
"
-

- e . 18

Pewof . we prove
①
,
since the proofs for the others are

ie x- Iz×2c Incitx) CX Vx>o .

similar .
'

We can use a similar proof to show that

let x ,iXzEI be such that X,cXz .

Then
,
if f is differentiable on I

,
MVT holds for Ex,XD

,
for any DEIR

, et = Liff ( It f-Y .

and so there exists a Ce Cx,,xz)
such that

fH×" = fed > O - CONCATIVITY
Xz- X, n

consequently (since Xu - Xi
>O) we had

that

; we say the graph of f is

•

fcxz) > FIX ,
)
,

which we wanted to show - %
"

concave upwards
' '

on I if
-

,
secant

functions WITH BOUNDED
DERIVATIVES

Yi!! i.net?gemenIe..:ting'in:..a.,anacs.am,
"!§÷÷;I

[a,b] and differentiable on (a' b) :#
-

'
. Assume f is continuous on

lies above the graph of f '
a b

with ME f' (x) f M theca, b) -

a

fan e Hai
Mlx-al tht '"

b] ' '

Similarly , we say
that the graph of f

ya, . . . . . ;

Then fla) t MH
-a) E

on I '

,

is
' '
concave dos

' '

,

pewof . we www m 't 't" 'm
-

if ya,beI , the secant line lies ilet ×e[a ,b]
be arbitrary -

[a ,×] , it implies belew the graph of f . J i
Then since

MVT is true on

feb, - -
- - -

-
- -
- -
!

← f
secant

there exists a
CE (ca,× ] such

that

f.(c) =
fW SECOND DERIVATIVE TEST
x -a

<

FOR CONCATIVITY
Hence my fCx)-f g m

× -a ' "
. Recall f-

" (x) is the second derivative of f -
*

or

fca, + mix
-a) E flx) E flat +

MHM . Dk

① If f.y×, > o y×eI ,
then f is

f " is a measure of how

''

quickly
"

the slopes
are

COMPARING FUNCTIONS USING THEIR
concave upwards on I '

changing .

② If f'
'

(x) co HXEI , then f is

DERIVATIVES
concave downwards on I .

" Assume f and g are continuous at x=a with flat -_gCa) .

Then : INFLECTION POINTS
differentiable for x >a ,

① if both f and 9
are

-
'
.

For any function f, a point (c ' Hd) * note : this usually occurs when

and f'(x) E g'(x) Tx
>a
,
then

is an

"

inflection point
' ' for f if f-

"

Cx) = o .

f- (x) f gcx)
th > a '

① f is continuous at Kci
and

Bet f'
'

(c) so does not guarantee that
are differentiable for Ka '

at X -- c .

② if both f and 9 ② the concavity of f- changes
c is an inflection point :

and f-
'

(x) E g' (x) tfxca, then

(eg f : XY )
f-(x) ? gcx) hfxca .

Ioof. we prove
①
,

as the proof for ② is similar .

CLASSIFYING CRITICAL POINTS
let h(x) = gcx)

- Axl .

Then h is continuous at X=a and differentiable for x>a

THE FIRST DERIVATIVE TEST
with h'(x) = g'Cx) - f-

'Cx) 30 Ix>a .

So
, by MVT, if x > a , it follows that Iceland such that

' "

Assume c is a critical point of f,

and f is continuous at c .

① If there exists an interval Ca, b) containing
Of h'(c) =

hcx) - hca)
-

X-a
-

C such that

But since h(a) = O and x - a > o
,

hence hlx ) 30 ,

i) f'Cx) CO IKE Ca
,
c) ; and

implying that gcx) > fix
) Vx> a - Be

ii) f'Cx) > 0 thee ( Gb) ;

then f has a local minimum at c .

② Similarly , if there exists an interval ( a. b) containing

c such that

i) f' ( x) so V- XE (a,c) ; and

ii) f-
'(x) co FXECC, b) ;

local maximum at c .

then f has a
-

THE SECOND DERIVATIVE TEST

'

Assume f'(c) =o and f
"

is continuous

at x=c . Then :

① If f-
' ' (c) CO

,

then f has a local

maximum at c; and

② if f-
' '
Cc) > O , then f has a

local

minimum at c .



(
'HJPITAL'S RULE

'

'

Assume that f'(x ) and g' ( x )
exist near

* this rule also works

x=a
, g'Cx) to except possibly at × -- a ,

and for one-sided limits

that fi,mafgf is an indeterminate form of type and for limits at

IN .

*

f- or I - note : LH only works

if the firm of the
Then

,

¥mafg,= finna ,

limit is org ! :

provided the latter limit exists ( or is a
or -N) .

USING LHR TO FIND LIMITS

OF OTHER INDETERMINATE FORMS
x

O . D l
' "

The indeterminate form
''

O - x
" usually

'

'

Example : fishy ( it
×

.

arises from hcx) = f-Cx) gcx) , where

Note that since Liff ( 1+1×1=1 and Liff x -- N,
fifa f-Cx) = O and fifa gcx)

= N .

this limit is of the indeterminate form 10 .

Example : mot Xlnlx ) we first write the function as follows :

since l×i→m+×=o and fight lnlx)= -N . this ( *⇒
x
= e×ln( 'txt)

.

is of the form
O - N -

Then
,

lim x Incl -1¥) is of the form O - N
,

But , observe that xlnlx) = ,
×→w

So we can use the same trick as above to

and this would be of the form % .

convert this into a g- form,
and so solve it

Hence
,
we can apply L' Hip''m's Rule :

using LHR :

Inc 't 't) txt)

finna = finna¥" fins = fins
I. Cx-' I Exit)

= lim txt ) =
lim ¥¥C -¥)

x→ot
- Hoo-

(Ia) txt
= fine. I = first

CIT)
-

- I
= I .

= Iim
Hot

C - ×) = O
' finally , since ex is continuous, we get

that

and so ¥f+xlnLx0= O ' DE lim ( +⇒ ×

=
lim
"N"

= e
'
= e . Da

x-7N ×→w
e

CAUCHY 'S MEAN VALVE THEOREM ((MVT)
Z

'

'

Suppose f and g are continuous on Carb] and CURVE IN IR
' " A curve in R2 is a function F :[a. b) → 1122 given by

differentiable on Ca
,
b) with g'(x) to theca, b) .

there exists a CE la
,
b ) F'(f) = ( get ) , fit) ) ,

Then gca) #gcb
) and

where get) and fct ) are called the coordinate

such that

f- Cb) - f-Ca) functions of F?
=

g'Cc )
'

GEOMETRIC INTERPRETATION OF CMVT
*
if gcxtx, this is the MVT.

'

Note that for any curve in IR
' F'

,

Puff . Since gkx) to , so gca) tgcb) .

E' ' Ct ) = ( g
' Ct )

,
f-
'

(t) )
,

let
H = fgfbbj-fgfaaf-gcxl-g.la)) - CH"

- Ha)) '
and the line in the direction of F' it) through

the point F' Ct) is the tangent line to the

Then HCX) is continuous on Taib] and differentiable

curve at Ect)
.

on (qb) with

Hca) : fgfbbfj-a-g.ca) - glad] - (Ha) - Ha)) = O
'

Then
,

the slope of this line is m=fg¥ .

and ; similarly , the slope of the secfft.fi:}
Heb) = gff¥gf [gcbl - goal] - (Hb) - Ha') = O '

through Fca) and Fcb) is

⇒a, .

So
, by Rolle 's Theorem

,
there exists a a- ("b) such that '

I go
, using

CMVT
,

we can deduce that

o = H'(c) = fgfbby.FI#gg'Cc ) - f-
'
Cc)

. ⇒ ceca
,
by such that Hb)-

g'(c )
=

gcb) - g ca)
;

It follows that ie the secant line through Fca) and Fcb)

f-
'Cc ) is parallel to the tangent line to the curve

gig
=

fcb) - Ha,

g¥a) -

through Fcc) .



PROOF OF L
' HOPITAL'S RULE BASIC CURVE SKETCHING:

INDETERMINATE FORMS PART 2
' '

; we call R*= RUI -a. a} the derive certain
'

we can use
derivatives to

set of extended real numbers .

characteristics of graphs of functions .
'

Next
, suppose f. g : I

→ R
,
where I is

an open
interval containing some at R

"
as

Steps :

an endpoint . Also assume gcx) to VXEI .

① Complete steps in Patel.

Then :

② Calculate f-
'(x) .

① fma±fgg is called an

"

indeterminate form

③ Identify any
critical points ; ie where

of type of
' '

if
fyµ=o or fi does

not exist -

④ Determine whether f is increasing or decreasing
¥ma±fCx) = O = ¥f±9Cx) ; and

by analysing
the sign of f'

Cx) between

② finna.+fg¥, is called an

" indeterminate form
critical points .

⑤ Test the critical points to
determine if

of type F-
' '

if

they are
local maxima ,

minima or

mat f-Cx)
= IN and fight gcx) = too .

neither .

(
'HfPITAL'S RULE FOR % ⑥ Find f'

'
Cx ) .

⑦ Locate where f'
'Cx) -- O or where f'

'
Cx ) does

'
'

Assume f. g :
Ca
,
b) → R

,
where a. be

R* with acb .

not exist . Use these points to divide IR into

Also assume f and g are differentiable on Ca, b )

intervals , and determine the concavity of f

and that both gcx) to & g'Cx) to Ike Ca, b) .

by analysing the sign of f'
'
Cx) inside

these

① Assume fijmatflxj-o-lxijnatg.CH. Then
,

i ) if fi;na+tgY = LER
,

then fight =L - intervals ( if possible) -

ii) if fifa = to
,

then find, =±a . ⑧ find any points of inflection '

⑨ Incorporate
the info into the graph .

② Similarly , assume Limb- fix) -- O = jiff. gcxl . Then ,

it if figs. }i = LER , then fish-ff =L .
'

il if ¥7. ff,= to ,
then ftp.tg.Y#-- to .

Pref ' we prove ① i
, as the other proofs are similar .

let E > O .
Choose acp

in I such that if as big Cp ,

then I FAI - Ll C E .

g'Cf )
(we can do this because fifa =L

.)

Next
,
let a cxcp be arbitrary -

let the sequence Ign} be such that acyncx

and yn→ a
.

Then
, by the CMVT

, for each new there exists

a point En C- ( x , yn) such that

ltgfIY.fi#,-Ll=lftEI - 4 .

g'( En)

Since a c En c p , it follows
that

I fcx)
- f-Lyn)
-

gcx)
- gcyn,

- Ll C E .

This is true knew ; but since

Liff Hyn) = O = nlitffgcyn) , it follows
that

limltgxjffsg.mn, -4 -

- 15¥, -4 Ee
n-3N

and so ¥;ma+fgf =L . Bu

* there are similar proofs for the cases where the

form of the function is E
N

-



Chapter 8:
Taylor Polynomials and Big-O 
Notation
TAYLOR POLYNOMIALS
'

'

Assume that f is n -times differentiable at x=a
.

Then
,
the

' '

n -th degree Taylor polynomial for f
* note : flute,
represents the

centered at x=a
"

is the polynomial hth derivative of a .

( if k=O , fchlca) = fca)) ." fth) (a) K

Tn,aCx) = I- (x-a)

ko
k !

= fca) t f'(a) Cx-al t Cx -a)
'

t - - it f"n" ex-as?
"

Note as n→N
, Tn,aCx) becomes a

better

approximation to the curve near x=a .

' "

z
Also

,
Ike Io, I, . . - in } : Tn!! (a) = f '" ca) ,

and is the only polynomial in which this is true .

TAYLOR POLYNOMIALS OF COMMON FUNCTIONS

' "
Here are the Taylor polynomials of common

functions :

① fcx)=e× : Tn,oCx)=¥oY÷= I txt + + . . . + ×÷
2-LE ) -11

② fan -- sinus : Tn,ocx)
-

- c- n'
'

( ) = x - ×÷t t - " t C- n'
"
( I¥⇒ !

)

③ fan -
- wscxs : Tn,ocxs= c- n'

'

c ) = i - + II. t . . . + C-n'
""
(Y÷.?

TAYLOR'S THEOREM
ERROR IN LINEAR APPROXIMATION

TAYLOR REMAINDER and so IR
,,aCx) )

'

Note that T
, ,aCx) = Lacx) ,

'
'

i

Assume fcmca) exists . Then the
the linear approximation.

" shows the error in using
"

nth degree Taylor remainder function there exists
'

'

Then
, by Taylor's

Theorem
,

it follows that

centered at x=a

"

is the function

Rn,aCx) = f-Cx) - Tn,aC× ) . a c such that

IR
,,aCxll = I

'
ex-a)21

.

'

'

Then
,

the error in using the Taylor polynomial

in linear approximation depends
on

Z

to approximate f is given BY
* This shows the error

the (potential ) size of f-
' '

Cx) and on Ix-al -
error = I Rn,aCx)l .

TAYLOR'S THEOREM
TAYLOR'S THEOREM IMPLIES MVT

' "
Assume f-

'n'-"
( x) exists V'KEI

,
where

'

Observe that when n=O
, Taylor's theorem

I is an
interval containing x=a .

I and its conclusion
Then there exists

let ×eI be arbitrary .
I

requires f
be differentiable on

a cecx, a)
such that

fennec, state, y×eI
,

ICE (x , a)
such that

Rn,aCx) = f-Cx) - Tn,aCx) = ¥,Cx
-a)
"

!
f-( x) - To,aCx) = f'(c)

( x -a ) .

Pioof . let xeI such that Ha . if's
,
But To,ac×, = fca) ,

so the above expression simplifies to

Then there exists a
m such that

f-
' (c) =

f- (x) - f-Ca )
Rn,aCx) = fix)

- Tn,aCx) = M (x-a)
" !

Fa
is
the MVT if n=o

.

Next
,
let

Fct) = fit) tf'CtHx-Ht Cx-ttt - - - tf!cx.tf-imlx.tn! ' and so Taylor's Theorem

Notice F- (x) = fcx) = Fla) . So
, by MVT

,

7- CECX
,
a) such that F'(c) = 0 .

since daff'Ycx-tiy-IIHLY.tl/cx-tlkttIt'.daefcx-ttY=flh-"
( t)

7. (x
-Hk + fkct )

= f- (
htt)
( t,

I
- K (x-t )

"-'
C- i )

7.
(x-Hh - fkct)
⇒ Cx-H

"!

it follows that F'(t) = f"tn" (x-tf - mcntilcxtl?
So O = F'(c) = f-

'""
cc )

7.
Cx-c)

"
-
mcntllcx-c)

n

and hence M = f" as required . Da
( htt) !

I



TAYLOR'S APPROXIMATION THEOREM I

'

Assume fck") is continuous on E-did ] for d > O .

Then there exists a constant M > 0 such that

I fcx) - Tk,oCx) / f Mlxl
"" Vice L-did] .

fcutl)(x)
Pref . let gcx) =/. )

.

Note that since tht" is continuous
, g is also continuous .

Then
, by the EVT

, g has a maximum on E -l 't ]
.

Thus
,
there exists a M such that

1ft
" " ( x )

Tat ) f m the -1-1,13
.

let XEE-1,17 be arbitrary . Then
, by Taylor's Theorem

,

we know that there exists a c between 0 and c

such that

IRK,o(x ) / =/
futile,
tht

x'"' /
.

Therefore lfcx) - Tu,oCxY = 11240411
= I f-

Cut')(c ) htt )- x

( htt) !

E Mlx
" 't

,

and we are done .
④

BIG-O ARITHMETIC OF BIG-O

-
.

we say f
is

"

Big -O
"

of 9 as *
we say f-Cx) has

' '

order
.

'

s
Assume fc×y= Own) and gcx) = OCXM) as HO

,
"

×→a if there exists a E > 0 and M > °

of magnitude that is less

such that lfcxll E Mlgcxll txt ( a
-Gate) than or equal to

that of for some m
,
NE N -

glx)
' '

near x→a . Let KEN .
Then :

(except possibly at Xia) .

① ccocxn) ) = O (xn) ; ie c. f-Cx) = ocxn) .
'
'

In this case
,
we write

② Ocxn) t OCXM)
= Ocxk)

,

where laminin, m}; ie fix)±gCx)= Ocxk).
f-( x) = Ocgcx)) optional .

③ ocxn) Ocxm) = Ocxntm
) ; ie fcxlgcx ) = ocxntm) .

*
we assume O CE El .

④ If Ken
,

then fix) = OCXK ) .

f-(x)=O(xn) ⇒ Liff fcx) = O
⑤ If Ken , then ¥0(xn) = Ocxmk) ; ie fix) = Ocxn

-k)
.

' !

Suppose fix)
= Olxn) for some new .

⑥ fleek) = O (ukn ) ; ie we can simply substitute x=uk .

Then Liff fcx) = O -

pay. . By aye ,
- MIME ftxltmlxnl on 't'" "apt CALCULATING TAYLOR POLYNOMIALS

possibly at x=0 -

Is AT MOST ITS DEGREE
ORDER OF A POLYNOMIAL

Then since fish - mlxnt-o-f.im mint
' "

let p
be a polynomial with degree n or less

.

by the Squeeze
Theorem we get that

Suppose pcx)= Ocxntl ) . Then pcx)=0 VXER.

Liff fcxl = 0 . %

thoof . let Qcn) be the statement

EXTENDED BIG-O NOTATION "

if µ×, is a polynomial
with degree

n or less'

pix)
-

-
O identically .

' '

' "

suppose f. g. h are defined on an open
interval

and pc×, = Ocxnt
' )
,

then

containing x
-

- a
, except possibly

at *a .

First
,
assume n

-

- O .

Then pcx) = co = Ocx) for some
GER .

Then
,
we write

continuous,
it follows

that

f- (x) = gcx)
t Ochlx) )

as x→a

Since pcx)=OCx
) and pcx)

is

it
f( ×) - guy =

Ochcx)) as *→ a - co = fifth) =
°

'm so
do,

holds .

proving that pcx)=0 ,
*
this tells us at values near x=a,

Next
, suppose

Que) is true for some K>
l
.

fcxyregcx) with an error that is an order
. . . + cuxht Cut,xk"= 01×42) .

Let pcx) = Co -1C , Xt Czx
't

of magnitude at most that of hcxl .
Then

,
once again, co = fish pox) = 0 .

TAYLOR'S APPROXIMATION THEOREM I
So qcx) = P¥ = C

, tczxt gift . - - t ckxh
-'
+ cut,×k=O(xht

'
)
.

"
. Let r > O .

Assume f-
"" '
(x) exists the [-r, r] and

It follows from the inductive hypothesis that qcx)
-

- O
,
and

f-
'n")

is continuous on
E-rib .

So pcx ) .
- xqcx) = 0 also

, proving the claim for htt .

Then fix) = Tn,oCx) t O ( xn
" ) as X→o .

Hence
, by induction , the claim is the VNEN VIO} . Be

Beef . By the EVT
,
f
"")

is bounded on E-r,r ] .

Ifan-114×11 EM VXEE-r,r] . CHARACTERISATION OF TAYLOR POLYNOMIALS
let M be such that

Then
, by Taylor's

Theorem
,

there exists a c between -
.

Let r > o be arbitrary . Assume f-
'"" Cx) exists

HXEE-r
,
r ] and f

"" )
is continuous on

E-r, r ] .
X and 0 such that

flntl ) (c )

Ifcx) - Tn,oCx)l= / ,×
"" ) f / (FT: #

" I = IT, !lxn" l . Then if p
is a polynomial of degree n or less

with

f-Cx) -_ pcx) t
Ocxntl)

,

This shows f-Cx) - Tn,oCx) = O (xn" ) as x→O
,

and the

then pcx) = Tn,oCx) .
result of the theorem follows. Dq

Ploof . By assumption, fix)
- pix) --

Ocxn" )
.

Then
, by the Taylor Approximation

Theorem I ,

necessarily fcx) - Tn,oC×) =
Ocxn" ) .

Hence hcx) = pcx)
- Tn,oCx)

= [fix) - Tn,oCx) )
- [fix) - pcx))

= Ocxnt' ) + O (xn
")

= O (xn
" )

.

But since h is a polynomial with degree nor
less

,

it follows that O = hcx) = pcx) - Tn,olxl ,

and therefore pcx ) = Tn,oCx) - Da
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