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Chapter 1:
The Riemann Integral

CODE KEY
D : definition÷÷÷÷E : example

C : corollary
T : theorem

NT : rotation

PARTITION OF la
,
b] RIEMANN INTEGRAL
#

( D1. I) ( RIEMANN) INTEGRABLE (Dl -3)
^

'

Let f :[a. b] → R be bounded .

-

'

s A
''

partition
"

of the closed interval ,

Then
,

we say f is
' '

Riemann integrable
"

, ÷ .

.

[aid is any
set * Ixoixi

.
-' i'n }

or just
"

integrable
"

,
on [a. b] if

,

" " " " " E

: i

such that
there exists an IER such that

Xi xztzb
a=XoCYs . . - s ×n=b -

for any e > o
,

there exists a
S > 0

EYE c- !Y4tehs, 4th tighter
""

SUBINTERVAL ( Dl- t) such that for any partition
X of Laib]

n

- : Let X=Ixo,x,. . . . ,xn} be a partition with 1×1<8
,

we have that

'

" "" ' is ." . I:i:÷
"""" " E

Then a

"

sub -interval
"

of Carb ] is any for any
Riemann sum S for f on X -

xz

interval of the form Exley , Xk ] ,
In other words

,
we have that

n

where Kecil, 2 , . . .

,
n }

,
and denote them

"
'"" """" irregardless:""¥" Iot.ir#ea.....x.s . I:i÷÷¥÷,

""" "

'

Note that
-

xz

bit Dzxt - - - t Dnx = ¥,Dkx = b -a .
( RIEMANN) INTEGRAL (Dl-3)

'

we say
the

' '

Riemann integral
"

of f on * regardless of our choices for tk ,

SIZE ( Dl - l) be the number we must always get
that

[a,b] is defined to
1 sum of areas - II C E !

' ÷ Let X be a partition of [a. b] .

IER described above, and write

Then the
"

site
"

of X
,

denoted

as 1×1 , is defined to be
I =/ ? f = Jab fc×yd× .

5-f"

1×1 = maxCID.ae/1EkEn }) .

RIEMANN SUM ( 131.2)

*

Ine regprg.sn?t.s
the

' '

wea undo

V

'

'

s
Let X be a partition of Taib]

,

I gafcxldx
and let f :[a. b) → R

be '

we can prove
I is unique -

bounded .

Puff . Suppose I & J are two such numbers .

Then
,

a

' '

Riemann sum
"

for f on X

let e>0 be arbitrary .

Then
,

choose a
S
,
> O

is a sum of the form
such that for any partition

X with IXKS
, ,

S=,¥,fCtk)Dk× ,

we have Is -II < ez for every
Riemann sum S

where the [Xk. , , Xk] VKEII, 2, . . ., n} . on X .

Similarly, choose a Sz> 0 such that for any partition
^

S = sum of areas of X with 1×682 , we have IS- Jtc Ez for every

rectangles Riemann sum S on X -

,

"'"""""" '"" "⇒
Then

,
lets -

- mines. .si , and # xuan,

* note that ti.tz.tz.ly Rts partition of Eqb] with 1×1<8 .

are at arbitrary positions
t For each KEI 1,2, --- in }, choose a TKEEXK-i , Xk ] .

ts in their respective
intervals !

(also note distance between consecutive Let s = ,¥
,
fetid Dex .

xn need not be constant )
.

Then
, by the Triangle Inequality, we have that

SAMPLE POINTS (Dl-Z) II - JIE II
-Sl + IS -Jtc It Ez=E.

' ÷ Let S=,¥
,

fctk) Dkx be a Riemann sum But since e> o was arbitrary , it follows that

for some bounded function f:[acb]→R I=J
, proving uniqueness . Dk

on a partition X of [a,b] .

Then we say tk is a

' '

sample point
"

of S for any
Kecil,2, - . - in } .



SOME FUNCTIONS ARE NOT INTEGRABLE (El-4) THE INTEGRAL OF THE IDENTITY
-

'

Ii's
,
we can show that certain functions FUNCTION (El - G)
are not integrable on a specific closed

'

The identity function fcx)=x is also integrable on any
interval .

it XEQ interval [ a,b]
,

and
-

Example : fix)= go
'

, ×¢①,
is not

integrable on [0,13 .

Jabxdx = Ecb' - AZ) .

Puff . Suppose f is integrable on [917 . Puff . Let e >o be arbitrary, and let S=}÷ .

Write I
o

'

fix> dx . Let X be
any partition of [a. b ) with HKS .

Let E=tz .

Then
, by definition, we can

Then
,
the Riemann sum S for f on X is

choose a f > 0 such that for every equal to

partition X with lxkg
,

we have that
S= fetal Dax =

u
?,tkDkx .

Is -II CI for every
Riemann sum S for

where the Exa-i. Xu] V-KEI 1,2, - . .

,
n } .

f- on X .

Next
,

notice that

Then
,

choose some partition X with IXKS .

¥
,

Cxutxu-1) Dux = (xutxu-1) (Xu- Xu-i)
Denote S

,
-_¥

,

fit
,)Dµx and Sz= ifcsklbkx,

= ai - xui,
where TKEQ and SKEIQ and tk.skt-xu-i.hu ] = Cx,

'
- xp ) text t - - - tcxn-*, )

for each KEI 1,2, . . .

,
n } .

= xp - Xo'

Note that IS
,
- Ilctz and 152 - II < I , by our

" "

u Cxutxu-1) Dux = b
'
- a
'
.

previous assumption that E='z . Moreover
, the Exa, ,×u] implies

that

subsequently , since TKEQ and SKEIRIQ IKE 41,2, . . . , n }, ltk-tzcxutxu-ilftzcxu-xu.it = tzbkx,
it follows that fctk)=l and fcsk)

-

- O ; and consequently it follows that

hence
,

we must get
that

is - Ici-a'11=1 tkbux - II. Cxutxu-1) Dux )
S
,
-_
'¥,fCtk)Dkx = IE

,
Dex = I - O = I

and =/ ictk - tzcxutxu-D) Dax )

Sz= ¥,fCsHDkx= 0
. E ¥

,
ltk-tzlxutxu.it/Dux

Thus
,

since IS
,
-IIc 's and 152 - Itcz , ← I.ictzbuxlbuxwe must finally deduce that

l l - II CI and III CI E ¥
,
Izgcb-a) ( since Dux CS and Dux -_ b-a by

-

definition)so that

{ c Ic Zz and - { ( Ic 'z
,

= E
, ( since S=}÷a ,

which is clearly impossible .
So that IS - Ichi-a'll E E .

But as E >o was arbitrary, this tells us that

Therefore f is not integrable on [0,13
,

which we wanted to show . Due I = Jab ×d× = Ichi- AZ)
,

THE INTEGRAL OF THE CONSTANT which we wanted to
prove

. DU

FUNCTION (El-5) a

- "
. The constant function Axle is

#y=c
I

I

always integrable on any interval ;⇐,,
[ a,b]

,
and i n i

,

a / b

fab cdx = ccb -a) . I acdx=cCb-a) .

Pewof . Let s be a Riemann sum for f on

a partition X of [a. b ] .

Then
,

S = ¥
,

f-(tic) Dkx ,
the [Xu-i. Xu] VKEII,2, . . .,n }

= £ c Dex
UI I

= CE Dkx
b- I

i. S = Ccb - a ) .

But since S was arbitrary , it follows that

I =/! cdx = ccb -a)
,

as needed . Dk



UPPER & LOWER RIEMANN SUMS (Dlitt)

Ucf, X) IS THE LARGEST RIEMANN Sum
'

Let × be a partition of Taib]
,

and

& Lcf, X) IS THE SMALLEST RIEMANN SUM
let f :[a,b] → R be bounded .

Then
,

the
"

ippv Riemann sum
"

for f on ×
'

por f ON X ( Nl -9)
denoted by Ucf,X)

,
is defined to a

-

Let T be the set of all Riemann sums

be 7.

Ucf, X )
= ¥

,

mkbkx ,

"t'"

for a bounded function f:[
a,b3→1R on

a partition
X of [a. b] .

where

Mk= sup Ctl : te Guy , Xu]}) VKEII, 2, - . - in} . Then Ucf,×) = sup (T)
and Lcf,X)= inf (T) .

=

'

Similarly , the
' '

tower Riemann sum
"

for f on X
,

In particular, we have that

Lcf, X) f S f
Ucf, X)

denoted by Lcf, X), is defined to

h

be for every SET.

n

Uf,X) = §
,
mkbkx ,

"t'"
pewof. we prove

the former statement, since the proof

where for the latter is similar .

mk= inffcfct) : te (xn, ,×u3} V-KEI44.i.sn}) . Then , note for any
SET

,
we have that

Ucf,X) & Lcf,X) ARE NOT ALWAYS RIEMANN S = I.fi#qxfuE,MkDux=VCf,xl,
SUMS ( 121.8) by construction of Mk .

Hence Ucf,X) is an upper
bound for 7 , and

'

Note that
,

in genu Ucf,X) and Lcf,X)

so necessarily Ucf,X) > supCT) .
are nota Riemann sums

,
as we

Next
,
let e > o be arbitrary .do net always have that Mk

-

- fctk) or

mk=f(Sk) Vtk,skE[Xu , ,xu3, where Keil,2, . . . ,n }.
Then

,
since Mk= supkfcttltE-xu-i.lu]}) , we

^
can choose a EKE Exley , Xu ] with

eg mz= inf (dfct) : teh
, ,xz]} )(

Mk - fltk) C ÷ , for every Keil,2
,
. . .

,
n }

.

p . - - - - - - -
- i

- - - -

i. Mz = 4

Bet fatty V-te-x.az] !
Hence

,
it follows that there exists a SET

such that

b ( so Lcf, X ) is not a Riemann
✓ Cf,×)

- S = ¥
,
mkbux - u¥fHk) Dax

sum
. )

Ucf, X) & Lcf,X) ARE RIEMANN SUMS = (Mk - fetid) Dux

IF f IS STRICTLYMON-OTONICCRI.se) C ¥
,

÷a Aux
-

Let × be a partition of [ a,bT , and = ÷aCb-a)

f:[ a,b] → IR be bounded ' c

'

. Ucf, X)
- S s e

,

Assume f is strictly monotonic ( ie and since E > o was arbitrary it follows that

sup CT)
= UHH

,

increasing or decreasing) .

as needed . 59
Then Ucf,X) and Lcf,X ) are Riemann

sums for f on
X '

Puff. If f is increasing, then

Mk=fCxu) and mk=fCXu- i ) V-KE.dk. . . .,n },

so that Ucf, X) and Lcf,X) are indeed

Riemann sums .

Similarly, if f is deceasing , then

Mk ' fcxuy ) and Mk = f-(Xu ) theft, 2 , . . . ,n}
So that Ucf,X) and Lcf,X) are indeed

Riemann sums . TO

Ucf, X) & Lcf, X) ARE RIEMANN SUMS

IF f IS continuous ( 121.8)

"
- let X be a partition of [a. b], and

let f :[ a ,b] → IR be bounded .

Assume f is continuous on Each] .

Then Ulf,X) and Lcf,X) are Riemann

sums for f on X .

Beef - By the Extreme Value Theorem
,

there necessarily exists some tk.SKE-xu-i.lu]

Such that fcsu) f ft) E f-Hk ) Htt (Xu-i. Xu ]

for each KEI 1,2 , . . .

,
n }

.

Let m
, f-Csu ) and Mu= feta) . Then since

tk, Sue [Xu-i , Xu], it follows that Ucf,X) and

Lcf,X) are indeed Riemann sums for f on X - IN



Of Lcf, X Vic}) - Lcf, X) e (M-mllxl,
Of Ulf, x) - Ucf,XUIc}) f cm-m) 1×1 (Ll - 10)
- : Let f :[a,b] → IR be bounded with ME

upper bound M and lower bound m . ¥9
m .

Let x and Y=XuI4 be partitions

of Tea, b], where CKX.

9-5, xz

1×1
Then

Of Lcf, y) - Lcf, X) E ( M -m) 1×1
,

ma

and #
O E Ulf,X) - Ucf,y) f cm-m)lxl . m

Pwef . We prove the first statement
, as the

proof for the second statement is ( of - TX, E (M-MIKI )
*

similar illustration for second

similar .

Say X=IXo,x, . . . . ,xn } and ce[×u, ,×ug
statement-

for some heft, 2 , . . . , n } , so that

Y = & Xo , Xi , . . - , Xu- i , C, Xu , . . . , Xn} .

Then

Lcf, y) - Lcf,X)= ((c
- Xue, > tscxu-cD-mucxk-xu.it,

where r=inf(Ifctllte-xuy.is}) , s=infCIfHHteE4xu3})

and Mk: infccfcttlte-xh-i.hu] }) .

Next
, since my = miner, s) ,

it follows that rzmu & so.mu,

so that

Lcf,y) - LAX) 3 Midc - Xu-it mucxu
-c) - mhcxu -Xu-11=0,

establishing
the first inequality .

Then
,

since re M and SEM
,

& mu> m by

construction
,
it also follows that

( Cf,y) - Lcf,X) f MCC-Xu,)t Mlxu
- c) - mcxu-xa.is

= ( M-m) (Xu- Xu- i )

f (M-m) txt .

Therefore , we have that

O E Lcfx) - Lcf,X)
f (m -m) 1×1,

which we wanted to prove -
Dh

((f.X) f Lcf, Y ) f Ulf, 'll f Ulf,X) ; XEY (Nl. 11)
' ! Let X and Y be partitions of [a. b],

such that X EY.

Let f : Ea, b) →
IR be bounded .

Then
,
we always have

that

Lcf, X ) f Lcf, y) f Ucf
,Y) f Ucf,X) .

Pref . If Y is obtained by adding one

point to X
, then this follows from

the above lemma .

In general,
Y can

be obtained by

adding finitely many points to X,

one point at
a time . B

n n

l:¥i¥±. I
b Yz b

Lcf,X) Lcf,y )
^

a

8-

b Yz b
UCF,X) If,y)

( X -- Ia,x,,b ) ( Y a,y, ,x,,yz,b) )

Ufixlf Lcf,y) f Ucf, y) EUCFY)

Lcf,X) f Ucf, Y) (Nl - 12)
- ÷ Let X and Y be any partitions of [ a, b] .

Then necessarily Lcf,X) f Ucf, Y) .

Pref . Let 7- XUY. Then by the above

note
,

( (fix) f Lcf, 't ) E Ucf, 't)
fulfil),

and the proof follows from here . DE



UPPER & LOWER INTEGRALS (Dl - 13)
'

! Let f:[a. b) → IR be bounded .

Then
,

the
' '

upper integral
"

of f on [a. b]
,

denoted by Ucf) , is defined to be

Ucf) = infcducfix) / X is a partition of [a,b] }) .
'

Similarly , the
' '

tower integral
"

of f on Carb]
,

denoted by Lcf) , is defined to be

Uf) = sup (ILCF, X) /
X is a partition of Each}) .

'

Note that Ucf) and LCH always
exist

even if f is not integrable - ( Nl . 14)
-

(Cf) E Ucf) (Nl- 15)
'

'

Let f :[a. b) → IR be a bounded function .

Then Lcf ) f Ucf) .

Puff . Let e > o be arbitrary.

Choose partitions
X
,
and Xz such that

( (f ) - Lcf, X, )
( Ez and Ulf,Xz) - Vcflc Ez .

Then

Ucf) - Lcf) = (UCH - ucfixz )) + (ucfixz) - Vfx, )) + ( Vfx,)
- Lcf))

> - Ez + o - Ez

= - E
.

Hence Lcf) - Ucf) C E
,

and since e > o was arbitrary ,

this in turn
,
imslies that Lcf) E Ucf) . Dh

EQUIVALENT DEFINITIONS OF INTEGRABILITY (TI- 16)
' ÷

Let f : Ea, b) → IR be bounded .

Then the following
statements are equivalent :

① Lcf) = Ucf ) ;

② For any
e >0
,

there exists a partition X

such that Ucf, X) - Lcf, X) CE ;
and

③ f is integrable on [a. b] .

Pewof . First , we show ① ⇒ ② - Lastly , we prove ① ⇒ ③ -

suppose Lcf) -- UCH .
Let E >0 be arbitrary . suppose Lcf ) = Ucf ) , and let I -- Lcf) -- Ucf).

Then
,

choose partitions X
,

and Xz so that
Then

,
let E > O -

Lcf) - Lcf, Xia Ez and Ucf,X2) - Ucf) < E . choose a partition Xo of [a, b] so that

Let X= X
, U Xz -

Lcf) - Lcf, Xo) a Ez and Ulf,Xo)
- Ucf) ( E3 .

Next
,

since Lcf, X, ) f Lcf,×) f Lcf ) (as X
,
EX)

,

it follows that Lcf) - Lcf,× ) f Lcf) - Icf,x, ) c Ez , say Xo -_ 4×0,4, - - - ,Xn} , and set 8= zcn÷m-mT
,

and since Ucf) f Ucf,X) E Ucf, Xz) (as XZEX) , it follows that where M and m are upper
and lower bounds

Ucfix) - Ucf) c Ez also . for f on [a, b ] .

Hence

Ucf,X) - Lcf,X) = (Ucf,x) - UCH] + ( Ucf)
- Left]t[Left - Vfx)] Let X be any partition of [a,b] with lxkf,

and Y=XoVX .
( Ez t O t Ez

Note that Y is obtained from X by adding at
= E

,

which is sufficient to show that ② is true . # most n - I points , and that each time we add

subsequently , we show ②⇒① -
a

point , the size of the new partition is at

suppose for any
e >0,

there exists a petition X such that most 1×1<8 .

Ucf,X ) - Lcf,X ) L E - Hence

Fix e > O
,

and choose X so that UCFX) - "t' ( E '

of Ucf, x) - Ucf, y) f Cn- 1) (M -m) 1×1 c ( n
-1) (M - m)8=Ez

Then
and

ucf ) - Lcf, = ( UCH
- Vfx)) + [ ucfix) - Vfx)) + (Vfx)

- 4ft)
of Lcf,y) - Lcf,X) E (n - 1) (M -m) 1×1 ( ( n

- 1) CM-m)f= Ez
( Ot Et O

by the first lemma on the previous page .

= E .

Since of Ucf) - Lcf, se te>o
,

this tells us that
Next

,
let s be any

Riemann sum for f on X .

Ucf) -_ Left , proving ① - # Note that Lcf, Xo ) E Lcf, Y) f Left -_ UCHE UCFY) f Kfi Xo)

Next , we show ③ ⇒ ② -

and Lcf, X) e se ucfxl, so that

suppose f is integrable on [a. b], with E-Jabfcxldx .
S - I E Ucf,X) - I

Let go .
Then , choose a 8>0 Such that

= Ucf
,
x) - Ucf)

with IXKS, we
have that

= ( Ucf,×) - Ucf,Y) ) t (Ucf,Y) - Ucf))
for every partition X

f (Ucf, X) - Ucf. Y)) t ( Ucf, Xo) - Ucf))
IS - IIc E, for every

Riemann sum S for f- on

( Eztez = E ,
X .

and
Let s

,
and Sz be Riemann sums for f on X

I - S C I - Lcf,X)
such that I Ucfx) - S, I c E, and 152 - LAX) Is ¥ . I

Lcf) - Lcf, X)

Then
, by the Triangle Inequality . = ( Lcf) - Lcf, y)) t (Lcf, y)

- LAX))

Iucf,x) - Lcf, X11 E lucfix) - Sil + IS, - Itt II-Szltlsz- Lcf,x)) E ( Left - Lcf, Xo)) -1 CLAY)
- Vfx))

( Ey t Ey t E, t E,
C Ezt Ez = E

,

and since e >o was arbitrary this is sufficient to
= E

,

prove ③ .

which is sufficient to prove
② '

*
%



INTEGRALS OF CONTINUOUS FUNCTIONS
CONTINUOUS FUNCTIONS ARE ALWAYS

INTEGRABLE ( Tl. 17) EXAMPLE : INTEGRAL OF fcx) -_I (E 1.20)
- : we can use the previous derived results to

-

'

: Let f : Ea, b) → R be continuous -

evaluate integrals of specific continuous functions ;
Then f is integrable on [a. b] .

Boff . First , note f is uniformly continuous eg J? 2x d× .
on Carb] . Let fC×j=2× . Note f is continuous, and hence

870 so that
Hence

,
we can choose a

integrable ( on [0,2] ) -

for all x.y
c- [a,b]

,
we have that

Then
, using the formula from Nl - 19

,
we have

Ix -yl es implies Ifk) - fly" s b¥ . that

Let × be any partition of Carb] with J!2×dx= Limo fun
,
a) An,u×

1×1<8 .

= diff find) (E) (since I -0,231 -- 2)
Then

, by the Extreme Value Theorem
,

there exists some tkiskc EX-I'M
] such = Limo¥

,

2¥ . I

that m
,

f-Csu ) f t f Mk -- fetid V-ttlxh-i.hr],
= Inigo 2.net . ( by the formula for the sum of

where KEIL, 2, - .
-

,
n } .

a geometric sequence)

Finally, since Hk- SKI E lxu-Xu-it f 1×1=8,
= him (6. 4th ) hitman,4¥

it follows that lmu.mu/=IfCtuI-flsu7lsIa (since = G Iim CI
n-7N 4th - I

f- is uniformly continuous ) .

Thus

= 6×1,7+4×7,
Ucf, X) - Lcf,X) =

a

(Mk - mu) but =
6 fishy, ,¥¥ ( by L'Hipitul's rule

,
since ¥, -_ I if * o)

< Ea?,Dux =¥,
= E

, if!2×d× =
3-

this tells us In (2) -

and as e > o was arbitrary =

that Ucf, X) = Lcfx),
SUMMATION FORMULAS (Ll-21)

which by the equivalent definitions of integrability

implies that f is integrable on [a. b] - 18
'

'

Note
n

that

① E I = n ;

i =L

SEQUENTIAL CHARACTERISATION OF

INTEGRATION (Nl- 18) n
②

i

i = ncnz i

-

'

: Let f:[a. b) → IR be integrable on [a. b], 1¥.

"
and let cixn } be a sequence of

S
,

③ ¥
,

iz = ncnttY2n ; and

a b n

partitions of [a,b] with him lXnI= O -

a
④ E i3 = n4n

i -- I 4
.

For any given
new

,
let Sn be any

p¥: I pf . ① is trivial
,

so we prove
② first.

Riemann sum for f on Xn .

S2
n

a b consider Z ( le'- Cle - 15) .
Then the sequence Isn} necessarily converges, a u= ,

On one hand
,

with
S3 II.ai-cu-iit-cx.at#-r4-----cn2-cn-n7nkjnfSn--JabfCxldx. '

a is = ri
.

. but on the other hand
.

Puff. Denote I =/!HHdx . n
:

UI
,

cuz- ca-D2) = ¥
,

Chi- Ch
'
-2kt 'D

Then
, given a e > 0

,
choose a 8>0 himosnfbafcxldx

= 2¥,k - II. I .
so that for every partition X of [a. b] :#

a b Hence n' = 2¥,k - n ,with IXKS
,

we have that IS -II CE

for every Riemann sum S for f on X. so that

II.u = Icn'tnl -- NII
'

. *
Choose a NEW so that if n > N

,

Ixnlcf
.

(we can do this since Ilxnl} -70 . ) Next
,
we prove

③ .

It follows that if n >N
,

then Isn-IKE, consider ÷,Ch3 - Ch-IP ) .
and as e> O was arbitrary

this is sufficient on one hand
,

¥
,

( W - Ch-113 ) ( H - 03 ) + CHA) -1 - . - + (n3-Cnt)3)
to prove that Lima Sn =/!fix)dx. Be

n?
'

Let f : Ca, b] → R be integrable on [a,b] . On the other hand
,

Then
, if we let Xn be the partition

a

(W - ( hyp ) = I,Cu3 - ( lis -362+36 - l ))
of [a,b] into n equal - sized sub -intervals,

=3?,h2 - 3£
.
,k t it

and Sn be the Riemann sum on Xn

using right- endpoints, it follows from the = 3¥,u2 - 3ncn + n .

Equating these
, we get that

above that

n3= 3-E.li - 3Mt
"
+ n

✓abfcxldx = Lima fun
, ,dDn

,
,p which eventually simplifies to

= find III. feat u)
.

( Nl - 19 ) Iii = "nt
'

G - #

n

lastly, we prove
④ -

Ent:
" "

e
:
'

n'÷
.". www.e.iw.a.in .

On one hand
,Hence

FB = (bye )ffCx, ) tfcxztfcxztfcxyl] IF
,

Ch
''
- ch-174) = CHOY) t CK'-H) t . . . + (n

"
-Unt)

")

= n
"
.= ( BI ) fcxu) . and on the other hated
,

I. cu" - can'll -- II.us - GI.ii-42.ie - I
.

'

= 4¥
.

,h3 - G ncnt" + 4 ntnz" - n .
Hence

n
"
= 4¥

.

,h3 - 6ncnt" + 4 ntnz" - n ,
which simplifies to

a

63 = 4 - #



USING SUMMATION FORMULAS TO CALCULATE

INTEGRALS (El- 22)
'

We can use summation formulae to

calculate integrals of certain functions :

eg J? ( x -12×3 ) dx .
Note that

✓? (x -12×3) dx =

nlif.SI?,fCxn,ulDn,ux--nliffI.,fCi-Zu)CI) (since I -4,331--2)

= him II. (CHIH -12C 't#3) ( E)

= his II. cent k-IITui-F.us)
-

- him.tn?.it2IzE..utIIEii+IaI.u7=nlifof.n+2nIz-ncnzt''
+ 4nF - ncn+"j2n +3¥ .n4n)

= G t Iz t HE + 3¥
.

'

. J? (x -12×3) DX = 44
.

BASIC PROPERTIES OF INTEGRALS
LINEARITY (Tl- 23) COMPARISON (Tl-24)

-

'

: let f and g
be integrable on [a' " '

-

"
s

. Let f and
g

be integrable on Eaib]
.

Let CEIR be arbitrary .

Suppose fix) E gcx) txt [a,b].
Then Cftg) and c. f are both integrable
on [a,b), and

Then

Jabcftg) = Jabf + Pag J! f f f! g .

and

✓! of = qfbaf. Ioof. Note that

✓If = him ifcxnklbmux
Puff. Note that

E Lifo gcxn.nl Annex (since fcxlfglx) V-xeca.by)
✓bat' tf!g = his I. ftxnulbmuxt his gun,ulDn,u×

= fbag . Da
= nliyfbna-ZCftglcxn.nl

UIL

and that

=/!Cf-1g) ,

y! f = chief &
. ,fCxn,ulDn,u×

= lnifobII.ccfkxn.nl
= Jbacf . DU

ADDITIVITY ( -11.25)
- ÷

Let acbcc
,

and f :[a. c)→R be bounded
.

Then f is integrable on Earl inly

if f is integrable on both [a. b ] and Cb,c]
,

and in this case

✓baf t f: f =/! f .
Puff . First, suppose f is integrable on [acid.

Finally , suppose f
is integrable on Ea,c3

,
and

choose a partition X of Cqc] such
hence also on [a,b] and [ bic ] .

that Ucf,X) - Lcf,X) C E -

say that be [Xu, ,xu ] , and let Y=Ixo,x,. . . .,xu, ,b}
Let It =/!f

, Iz=f§f and I f-

and ⇐ Ib, Xu ,xµ , . . . . , xn}, so that Y and Z Lef E>o be arbitrary . Then
,

choose a 8>0

are partitions on [a,b] and [b.c) respectively . so that for all partitions X
, ,Xz and X of Carb],

Then Ucf,Y ) - Lcf, y) f Ucf, Xue:b}) - Lcf, XUIB} ) ( by vi. il ) Cbc] and [are] respectively, if IX. 1,1×21,1×1<8,
E Ucf ,X ) - Lcf,X) ( by vi. it also ) then IS

,
- Ill

,
152 - Izl

,
IS -IIc § for all Riemann

( E
,

sums S
, ,Sz , S fo- f on X

, ,Xz & X respectively .
and Ucf, t ) - Lcf, 't) f Ucf, XU Ib} ) - Lcf, XV Ib}) choose partitions X

, and Xz of Ca,b ] and Cbc )

E Ucf, X) - Lcfix) with IX. ICS and 1×2158.
( E

, choose Riemann sums S
, and S2 fo- f on X, and Xz .which is sufficient to show f is integrable on both [a,b ]

and [ b. c] .
Let X=X,UXz , and note that lxlcf and 5=5, -152

Conversely, suppose f is integrable on both [a,b] and Cbc] .
is a Riemann sum for f on X .

Then necessarilychoose partitions Y of Ca
,
b) & 7 of [b. c] so that

II -CI
, -11211 = ICI-s) -16, -F) 1- (Sz-Iz)/

Ucf, y) - LCFY) < Ez and Ucf, 't) - Ltfzk Ez .
Then XIYUZ is a partition of [are ], and f II - Sf + IS, - I , I + ( Sz - Izl ( by the Triangle Inequality)

Ucf,x ) - Lcfix) = (UCf.yi-UCFHH-CLCfyl-4f.tt] CE , E Ft Ez tf
which tells us Ulf,x ) = Lcf,x) ( since e>o was arbitrary ) = e

,

and consequently Cby the Equivalent Definition of Integrability ) and since e>o was arbitrary this is sufficient to
prove

that f is integrable on [a,c]
.

that I
-

- Itt Iz . Dq



PIECEWISE CONTINUOUS FUNCTIONS ARE

INTEGRABLE (Cl - 26)
' ! Let X=Ixo, x, . . . . . Xn } be a partition of [a,b] ,

and let
gu :[xuy , Xu] → R

be continuous V-KEI 1,2, - - in } .

Let f :[a. b) → R be a function with fat -_ gutt) V-tecxay.ge) .

Then f is integrable on [a. b] with

✓! fcxldx = ¥
, ¥! gucx)dx .

Prof. . This follows from the additivity and linearity

properties of integrals - Doo

✓If = O
, Jaff = - Ibaf ( Dl - 27)

- For any function f and AER
,

✓
"

f = 0
.

a

Additionally, if Jabfcxldx exists
,
then

✓abfcxldx = -efgafcx) dx .
'

Note that this definition can be used to

extend the scope of the Additivity

Theorem to the case where a. b. CER are

not in increasing order . ( Nl - 281
-
-

ESTIMATION (TI - 29 )
'

'

Let f be integrable on [a. b] .

Then Ifl is also integrable on [a. b ] ,

and

If! fl E J! Ifl .
Ioof . let e > 0 be arbitrary.

Choose a partition X of [a. b ] such that

Ucf,X)
- Lcf,X ) L E .

Denote mkcft-supdftttlttlxu-i.nu]} and

Mkctft) = supflfcttllttfxu-i.hu] } theft,2 , - -- in },
with similar definitions for Muff ) and mullfl) .

Then
,

① if of muffle MUCH , Muclfl) -_ MUCH and

Muclfl)= mucf) ;

② if mulfleof Muff ) , Mwctfl) = maxfimutft, -much))
and muctfl) 30,
so that Mkclfl ) - muctfllfmaxldmucfl, - much}) f Muff)

-muff) ;

&

③ if mucflf MUCH EO, Muclfl) = - Mnlf) and muclfl)= - Muff),

so that Mkclfl ) - muctfl) = Mkcf) - much .

In
any one of these cases, we have that

Mkclfl) - muclfl) f Muff)
- much ,

and so

UCHI , X ) - LCHI, X ) = ¥
,

(Muclfl) - muclfl )) Aux

fu (Mdf) - much) Dux

= Ucf,x ) - LAX)

( E
,

which is sufficient to prove that Ifl is integrable
on [qb] .

Next
,
let Eso be arbitrary .

Choose a partition X on
Ea,b] and choose

values the Exa -i. Xu ] thee 1,2 , . . . , n } so that

1¥
,
fltuldux -f!fl < Ez and III. Ifctulbux -fablfllctz :

Note by the Triangle Inequality that

u fctklbuxf I
,
Ifctullbux

,

so that

Ifbafl - I:lfI=(If!H - III.fi#daxl)t(lIafltulbuxf-IifHuHDuxl
+ (II. tfctullbux - J ! Ift)

< { tot E
Z

= E .

Since e > o was arbitrary, this tells us that

hfbafl - fbalfl so,
as required

- Da



THE FUNDAMENTAL THEOREM OF CALCULUS
'

First, note that for any function F
,

defined on an interval containing [a. b ]
,

'

Let f be integrable on Taib]
,

and F be

we write

differentiable on [a. b] with F
'
-

- f -

[ Fcx)] ! = Fcb) - Fca) . ( NTI - 30)
Then

'

Let f be integrable on Carb] . fbaf = [Fix) ]ba= Fcb) - Ha) . (1-1.31)

Define F :[a. b) → R by
Puff . let e >o be arbitrary .

F-(x) = Jax fctldt ' choose a f>o so that for every partition ×

Then F is continuous
on [" b] .

of [a,b ) with lxlcf
,

we have that

moreover
, if f is continuous at a point xela.by

,

then F is differentiable at x and lfbaf - §
,
fctulbux ICE

f-
'

(x) = f-Cx ) - (TI - 31 ) for every choice of sample points tkt 1×6-like] .

Puff . Let m be an upper
bound for Ift on [a' b] .

Then
,

choose sample points tkt let '"] "

Then
, for any a Ex,yEb, we have

that

F'Ctu ) =
FC×ul-FCx#

I Fly) - Full
= If!f - faxfl Xu - Xu - I '

= If!fl ( by additivity) linearity)
which we can do by the mean Value Theorem

.

Elf!HII ( by estimation ) This implies that fetal Bux = Fcxu ) - Fcxuy) .

Elf,'m I Hence

= mly-xl , II
,
fctulbux = ¥

,

#(xn ) - Fcxa-it )

so that given an e >0
,

we can choose a f -- Em = ( FH) - Fcxo) ) + Cleft-FH)) t - - - + ( Fcxn) -Flynt) )
to get that ly -yes implies that

= f- (xn ) - Fcxo )

I Fly) - Full E m ly -XI L MS = El
= Fcb) - Fla )

,

showing F is continuous ( indeed
, uniformly and consequently

continuous ) on Carb ] .

1)baf - ( Fcb) - Fla) ) / C E .

Subsequently , suppose f
is continuous at some xecqb] .

But since Eso was arbitrary, it follows that
Then

, for any af x. y E
b with xty, we have

that Jbaf = Fcb) - Fla),

I FCylyc×
)
- fail = /%ty! - fix) ) as needed . De

=/ - %yt / ANTIDERIVATIVE ( 131.32)
'

we say
F is an

' '

anti derivative
"

for f on

= ¥1)! (fat - fcxlldtl some interval [a,b] if F'=f on [a ,b ] .

E ,y÷, If '×lfCH - fcxlldtl -

'

In this case
,

we write

let E >0 be arbitrary .

Since f is continuous at ×
, ① Jf = F t C

,
CER i or

it follows that we can choose a 8>0 so that

if ly-xlc8 , then I fly) - fadl L E.
② ffcxldx = Fix) -1C

,
CER . ( N 1.34 )

so
,
if Oc ly -xlcs , then

- "
-

Note that if a '=F'=f on [a. b], then

3

I - fix) / f 1¥, I HAI -fall at necessarily ca - F)
'
= 0
,

so that a - F is

constant on the interval ;
E ¥11! Edt )

ie a = Ftc for some CER . ( Nl - 33 )

= ,y¥, e'5×1
EXAMPLE : JYJ ,+dz (El- 35)

= E
,

showing that F'(x) exists and F'(x)=fCx)
" !

We can use the Fundamental Theorem of

Cas Eso was arbitrary ) . Dae
calculus to calculate integrals of

specific functions;

egg? .de#z .

Since ( tan
-'

Cx) ) = ¥ ,
it follows that

IT .fi#=-taicxnT
= tan

-'

(Vz) - tan
-'
co)

i :

.



Chapter 2:
Methods of Integration
BASIC INTEGRALS (NZ- l)

-

Here is a list of basic integrals :

① J×Pdx = ×pP t c , pt
- I ⑧ Jsec4×)dx = tank) -1C

② J # dx = lncx) t c ⑨ Jseccxltancxldx =
sedxttc

④ Jtancxldx = lnlwscxlltc

③ Jexdx = ex + c
④ Jseccx) dx = Int secant tancx)l + c

④ Jax dx = f÷a, + c ④ J dx = tan
-' (x) t c

⑤ Jlncx) dx = xlncx) - X + c ④ J dx = sin
-'
(x ) + c

⑥ fsincxldx = - cosh) + c
④ f d× = see

-'
Cx) + c .

⑦✓wscxldx = sink) + c

Pheof . Each of these could be verified by taking the

derivative of the RHS
,

and confirming it

matches with the function in the integral .

The proof then follows from the Fundamental

Theorem of calculus . DE

EXAMPLE 1 : J! dx (E2.2)

' "
-

we can solve the integral J! dx

using the Fundamental Theorem of calculus .

I,4× dx =/! x? - 55's dx
= [Ex

?
- tox

'T ] !
= ( Est - 20) - ( E - lo)

: . J,4× dx =
'

I.
IT

EXAMPLE 2 : Jaff sin(2x) -1 cos xldx (EZ-3)
IT

-
"
-

we can also solve the integral ¥63 since)+wsC3xldX
using the Fundamental Theorem of calculus .

First , note dd×LcosC2x)) = - 25in (2x) and d¥(sinC3x)) = 3wsC3x)
,

it follows that dad-tzwsczx)) = sin(2x) and add}sinC3xl) = cos x) .

Hence

sina.xltwsc3xldx-f-tzwsczxl-tzsinc3xDI.bg
=L # to ) - C -ft 's )

=
I
6 -



SUBSTITUTION/CHANGE OF VARIABLES (T2-4)
-

:
Let u=gc×, be differentiable on an interval , EXAMPLE 5 : f ×¥y ( E-2.10)
and let flu) be continuous on the range

'

'

Sometimes
, we might have to do two

of glx) - substitutions to calculate some integrals;

Then eg f ,¥r× .

✓ fcgcx)) g'Cx) dx = ffculdu
First , let u=fx

,
so that x=u2 and 2udu=dx .

and Then

¥!HgcxDg'Cxldx = fiji!," fondue . Jiffy = JuY¥u= 131T .

Next, let v=u+1 , so that dv=du . It follows

Puff - let Fcu) be an anti
-derivative of flu) , so that

that

F-
'

(a) = flu) and ffcu)du= Fcultc . I,¥r× = ✓KIT

Then
, by the chain Rule

,
we know that =f2gI

£×FCgc× )) = F'Cgcx)) g'Cx) = fcgcxhg.CH, = 21h14 to

= Zlnlutlltc
and so by the Fundamental Theorem of Calculus

,

, " J = 2in hrxtlltc .

✓ fcgcx)) g'Cx) DX
= Fcghdltc = Fcu ) -1C =ffCu)du

and EXAMPLE 6 : J! ×d ( Ez.li )
✓2×2+1

¥!Hgcx"g'G) dx ! !!:}!:3? Egg,,
' ÷

When doing substitution
,

we need to change

u=gcb) the values of the
' '

endpoints
" accordingly := [ Flu) )u=gCa)

: . fiabfcgcxllgcxldx =/!!!! Hulda . Da
G J! dx .

Let a- 2×41 , so that du=4xdx .
"

"

Note that if flu) -- gcx), Note that u= , and u=9 when x' 0 and 5-2

we often write f'(a) du = g'G) dx - ( N-12.5) respectively .
Then

EXAMPLE l : fV2xtTd× (E-2.6 ) VIII dx = hi! III
-

Substitution can be used to compute integrals =/!!! #u-Idu
such as fV2xtT dx .

Let u= 2×+3
,

so that du=2dx .
= [Lutz ] !

( using the notation from above) .
= Zz - Iz

Then
i
' VIII DX

= , .

✓Vzxttdx = fuk (¥ ) dx

=fuZ+c EXAMPLE 7 : Jj -1+3×2 (E2.12)
:
. ✓Vzxttsdx = thx-1352 to .

' : sometimes
, we might have to make a weird

substitution to solve an integral :
EXAMPLE 2 : /xe×Zdx (EZ- 7)

eg f: ,¥×. .
' "

- The integral f×exZd× can also be solved
let u=rz×

,
so that du=r3d× -

using substitution . Note that ×=o⇒u=o , and x=I⇒u=B .

Let u=×
'

so that du=2×d× . Then

¥!,fz = Ju!! . If
Then

f×ex2d× = IIe" du
= tan

-'

cus]B
= Ie

"
t c o

i
. f×e×2dx = 'zeit c .

= ( Iz - o )
:
. f-

'
de -

-ftp.X-o1+3×2

EXAMPLE 3 : fh dx (E2.8)
'

Substitution can also be used to

solve integrals like f
' '

dx .

Let u= lncx) so that du = txdx -

Then

flnd× = Juda
= Iz t c

:
. J

'
dx = Clnc + c .

EXAMPLE 4 : Stana) dx (EZ-9)
' : we can use substitution to solve

more complicated integrals
like

✓ tancxldx .

First , note fancy ,
Sinha
coscx)

-

Then
,
let u=wsCx)

,
so that du= -sincxldx .

It follows that

✓ tancxldx = ✓sinwscx)
= f -due
= - lnlultc

i . Jtanlxldx = - In Icoscxlltc.



INTEGRATION BY PARTS (T2- 13 )
'

'

Let fcx) and gcx) be differentiable in an

' POLYNOMIAL X LOGARITHMIC OR
interval .

Then INVERSE TRIGONOMETRIC FUNCTION
✓ fix)g' dx = fcxlgcx) - efgcxlfcxldx,

so that
i
If the integral involves a polynomial

flxljlxldx = [ftxgcx) - fgcx)fyx)d×]!!! .

multiplied by a logarithmic or inverse

trigonometric function,

Pweof . By the Product Rule
, try integrating by parts with ¥ equal

ad-xcfcxigcxh-ftxlgcxttfwg.CH . to the logarithmic / inverse trigonometric function . ( NZ. 15 )
-

Hence
, by the Fundamental Theorem of Calculus

,

EXAMPLE 1 : flncxldx (EZ- 18 )
✓ (f'cxlgcx) t fcxlg.CH/dx--fCx)gCxi-c ,

which can be rewritten as
' !

We can use the above strategy to evaluate

✓ fcxygyx) dx
= fcxlglx)

- JgWf'G) d× '

the integral flncx)dx -

(the arbitrary constant c is not needed

Integrate by parts using (d!! d! Tax )
since there is an integral on both sides of

the equation . ) DM
to get

✓ Incxldx = xlncx) - Jx . # dx
'

If we let u=fCx)
,

du -- f'Cxldx, v=gCx) and dv=g'Cxldx,
= xlncx) - Jldx

the above formula becomes
.

'

. Jlncx)dx = xlncx) - Xtc .

✓ udv = uv - Jv du - CN-12.14)
EXAMPLE 2 : J

,

"
rrxlncx) dx ( E2.19 )

POLYNOMIAL X TRIGONOMETRIC OR '
'

'

The above strategy can even be used when

EXPONENTIAL FUNCTION the polynomial contains terms with non - integer

powers ;
-

'

If the integral involves a potynonia '
eg f! rxlncxldx .

multiplied by an exponential function

or a trigonometric function , Integrate by parts using (II.
'

II! a!I )
try integrating by parts with ± equal to get
to the polynomial - ( NZ - 15 ) J lncx)dx = [}xZlnCx) - J}x÷dx ) !
* note : multiple applications of integration by = [Ex} lncx) - gI× ? ] !

parts may
be required if the degree

of the polynomial is high .
= ( 'final) - F ) - ( Zina) - Ig )

"
' J,4Jx1nCx)dx =

'final) - ¥ .

EXAMPLE 1 : Jxsincx) dx (E- 2.16)
-

'

we employ the above strategy to evaluate EXPONENTIAL X SIN COSINE FUNCTION
the integral ✓xsincxldx . '

If the integral
involves an function

Integrate by parts using ( 1¥,d× diiiiniii"dx ) times a sinews function ,

✓xsincxldx = - xwscx) - f- cos# dx try integrating by parts twice , letting I
= - xwscxlt Jcoscxldx be the exponent both times ' ( N 2.15)

i
. fxsincx) DX =

- xcoscx) t sink) + c-

EXAMPLE 2 : Jcxzti)e2×d× CE2.17) EXAMPLE : Jexsincx) dx (E2.20)
' "

we can use the above strategy to evaluate
' "

similarly, we can use the above strategy

to evaluate the integral futile
"
dx . the integral Jexsincxldx .

First
, integrate by ports using (I

'

a, a ) Puff. Let E- fexsincxldx .

to get Integrate by parts twice
, first using (If Ia, iii. sinai"d×) .

✓ exit) e
"
dx = textile

"
- IIe"C2×d× ) and then with (

"2=e× Vz = sink)

) to get
= textile

"
- Jxe

"
dx

.

duz=e×d× dVz= cosh) dx

% find fxe"
,

we integrate by parts again ,
I =fe×sinC×)d× =

- excess + fexwscxydx
this time using (IIIa, du

"

a !× ) :
= - exwscx ) + (exsincx) - Jexsincxldx)

: . I = - e×cosCx) t exsincx) - I
.

✓(Rtl )eZ×dx = I(x'the" - fxe
"
dx

! Textile
"
- ( Exe

"
- IIe"d× )

Hence ZI = - eicoscxltexsincx) + c ,

so that I = {(sink) - cos e
"
t d .

zCx2tDe
"
- Exe
"

t Lye
"

t c

.

'

. JCXZTI )eZ×dx = tyc 2×2-2×+3)eZ×t C -



OTHER SORTS OF PROBLEMS
EXAMPLE 1 : fsinncx) dx (E2.21)
-

we can use integration by parts to get
a general formula for fsinncxldx in

terms of Isin
"-'

Cx) DX .

Let I = Jsinncxldx = Isin
"- '
Cx) sink)dx

sin
"-'(x) V= -wscx ) )Integrate by parts using (II. cm,>csinmzcxycwscxildx dv=sinWd×

to get
I = Isin

"
(x) DX = - sin

"-'

(x) coscx) - J-coscxlcn-1)(sin"
-'
Cx))CwsCxDdx

= - sin
"-'
Cx) wscx) t Jen-I)Cws4xl) (sin

"-4×1)dX

= - Sinn
-'
Cx) coscx ) t Jin-1) ( I -sink)) (sin

"-4×11 DX

s
.
I = - sin

"- '

Cx) coslx) t Cn-1) Isin"-4×1 dx - Cn-1) I -

Hence

(n - 1) It I = NI = - Sinn
-'
Cxlcoscx) t Cn-1) fsinn

-

Zcxldx
,

so that

I = - In sin"
-'
Cxlwslx ) t nfsinn-Zcxldx .

'

In particular, we can use the attained above

formula to evaluate fsincxjdx and Isin"Cxldx .

In particular, when n=2
,

we get

✓ sincxldx = - tzsincxlwslx) t '

zfldx
:
. ✓ sincxldx = -tzsincxlcoslx) + Ex t c .

When n=4, we get

✓sin'Yx)dx = - tysincxlcoscx) t Zyfsincxdx

= - I
,
sincxlcoscx) t Zyf -tzsincxlcoscxttzx) t c

.

'

. ✓sin'4x)dx =
- tysincx) coscx ) - Zgsincxlcoscx) t f-Xtc .

EXAMPLE 2 : Jsecncx) dx (E.2.22)
'

In a similar manner to the above
,

we can

use integration by parts to attain a general
formula for fsecncxldx in terms of ✓seen-4×1 dx .

Let I -_ fsecncxldx = fsecntecxseccxldx .

Integrate by parts using ( u
-

- seen-4×1 Flank)

µ )du = Cn -2) Csec"3Cx))(seccxltuncx) ) dv=sec4x )

to get = Cn-2) (seen
-'
Cxlktancxll

I = fsecnlxldx = seen-4×1 fancy - Jen-2) (seen-4×1)Ctan4xHdx
= seen-4×1 tank) - fcn-2) (seen-4×1)(sec2x - 1) dx

. : I = seen-4×1 tank) - Cn-2)It (n-2) fsec
"-4×7 dx .

Hence

( n -1) I = seen
-'
Cx) tank) -1 (n-2) fsecn

-

Zcxldx
,

so that

I = seen-4×1 tancxlt 7✓ seen
-'
Cxldx .

We can use the above formula to evaluate

the integral Jsec3cx)dx .

In particular, when n=3
,

we have that

✓seeCxldx = Izseccxltancx) t ztfseccxldx

.

'

. fseicxldx = tzseccx) tan (x ) t tzlnlseccxlttancxlltc .



TRIGONOMETRIC INTEGRALS

✓fcsincx)) cos
""
(x)d× OR Jfctancx)) see

""
Cx) DX

✓f-(cos(x)) sin
""
(x)DX -

To find ffctancx)) see
""

cxsdx
,

write sein" = Clttancxllnseccx)

and try the substitution a- tank), du -_ seek) . ( N2.23 (4))
'

To find ffcsinlxl) cos
""
cxldx

,
write

cosh"Cx, = Cl - sinlxllnwscx) and EXAMPLE l : Jo"4fan4C×)d× (E2.26)
then try the substitution u=sinCx)

,
'

The above strategy can be used to

du = cos G) DX - ( N 2.23 Cl ) )
solve the integral Jo

""
tan
" dx .

'

Similarly, to find ffcwscxllsinnttxldx
,
write

Note first that

sin
""

Cx) = ( I -ws4x))
"

sink) and then

try the substitution u=wsCx)
,

du -_ -sink)d× . (NZ-23 (2)) Jo
""
tan" Cxsdx =

"

tank) seicx) - tan × d×

EXAMPLE : Jo"3 swig}{d× (E-2.24)
= Jo
""
tancxsseicx) - sedan -11 dx .

To find Jtancx)sec4x)d×
,

make the substitution
'

"
'

we can use the above strategy to

5- tank)
,

du = seczcxjdx to get that
solve the integral II

" siwY×,dx .

✓ tancxlseccxldx = Jiddu
Make the substitution u=wsCx)

,
so that du -- -sink)dx.

=
u3

Then 3-
t C

x=I
3✓o%siwgY,d× =/ ctwsxsincxldx '

'

- Jfanzcxyseczcxldx =
tank)

x-0 cos
-Cx) 3- t C .

= f
"'ECdu It follows that
4--1 U2

=/!! - uh -11 du
Jo""tan4cx) = [tansy' - tan + × ]I

"

= [ tutu] } = I - I + It
,

= ( zt 's) - Citi) : . Jo
""
tan"Cx) = - Zz + If .

i
. Jo

""

siwns.fi?,dx--tz .

EXAMPLE 2 : Jo"4sec" dx (E- 2.27 )

✓sin>mcx) cos
"
(x) DX Ntancxitl

' ÷
we can again use the above strategy to evaluate

-
'

- To find fsinmcx) coshed, try using the trigonometric the integral
4 sedan

I -_ DX .

✓tank)-11
identities Sirico) = I - Izcosczo) and costOktzttzwsczo).

Make the substitution a- tank)
,

so that du -_ see dx -

'

Alternatively, write cos
"
Cx) = ( I -sink))

"

and use the Then

formula from
E- 2.21 - ( N2.23 ( 3 ) ) fo"4v,asn4Ifdx= J

,

ctan4g4x#
✓ tank) -11

EXAMPLE : Jo"" sinbcxsdx CEL-25)
= fu! YII du .

-

we can use either strategy I or 2

to evaluate the integral Jo
""
sinbcxldx .

Next
, make the substitution ✓ =u+l, so that du -- du .

Then
we use strategy I -

fo
""

dx = Ju!! Y du
Note that Ntancx) -11

f.
""
sinbcxgdx = Jo

""
C 's - tzwsczxsldx Cfgirngmu,the

half-angle
= f2Kv du

= Jo
""

tf - f- cos + f- cos >(2x) - fcos3C2x) dx = J! Ez - zu's -125¥ dv
= fo
""
'T - Igwscsxltgctzttzcoscix)) - ICI-sinczxllcosczxldx = [ EVE - Fv? + 4¥] ?

= Jo
""

- tzcosczx) t ,ZwsC4x) t f- sinczx) cos dx = ( Funk) - Funk)-11452)) - (Z - ¥+4)
= [FIX - Tsin(2x) t # since) t fgsin3cz×) )

"
i
. fo

""
d× = 44%-462✓ tank) -11 .

= 5Th, - It Is
-

'

' fo
"

"sin4xdx= 5¥, - Is .

Jfcseccx)) tan""(x) DX
' ÷

To solve ffcseccx)) tan""G) dx, write tan
""

= ↳ei%seccxHancx)
and try the substitution u=secCx)

,

du -- seccx) tank)dx . ( N2.23 ( s ) )

✓see"
"
(x) tanncxldx

' ÷
To solve fsec

""

Cx) tan
"
Cx) dx

,

write tan
"
Cx) = (seek) -t )

"

and

use the formula from E- 2.22 -

c N 2.23 ( G ))



✓sincax) sincbxldx, Jcoscax)coscbxldx
OR Jsincax) coscbx) dx CN2.28)
-

"
. To evaluate efsincaxlsincbxldx , fwscaxkoscbxldx or

✓sincaxlcoscbxldx, use the identities

① cos CA- B) - costa -113) = 25inch) sinCB) ;

② cos CA - B) t cos (ATB) = 2cosCA ) cosCB) ; or

③ sin CA- B) t sin (ATB) = 25inch) cosCB ) .

EXAMPLE : Jo
""
cosczxjcosczx)dx (EZ-29)

-

'

:
we can employ the above strategy to

evaluate the integral Jo
""
cos x)wsC2x)dx .

By ② in the above
,

we have that

2.cos X) cos (2x) = cos x -2x)tws(3×+2×7

cos (x) t cos CSX) .
Hence

Jj
""

cos (2x)wsC3x)dx = Jo
""
tzccoscxtcoscsxlldx

= [tzsincxifosincsx)]!"

= I
, tho

.

'

. Jj
""
wsczx)wsC3x)dx = Fo -

WEIERSTRASS SUBSTITUTION (N2.30)
-

; The Weierstrass substitution is letting us tancxz ),
so that x= 21am

-'
cu)

,
dx= ¥2 du .

'

Additionally , it implies sin (E) = IF & cost'Et=¥T ,

so that

① sink) = 2. sin CI) cos CE)

= zCf⇒Cu¥)
: . sink) = FIT ; and

② coscx) = cos
-

CE ) - sink'E )

=Cr¥5 - ¥75
=

I - U2
: . cos (x)
E .

EXAMPLE : JDL (E2.31)
I -cos(x)

' "
The Weierstrass substitution can be used

to solve some integrals ;

eg ✓ del -wscx) -

let u=tan(It, so that dx=¥zdu , and

coscx) = II
( f-U2

'

Then

✓ fast
,
= Jiffy, #da)

=/,+¥tuz, die
= ✓ deU2
=
-Itc

i
. J,÷E

,
= - wtf t c .



INVERSE TRIGONOMETRIC SUBSTITUTION
-

✓f-(Va'- 51×+42 ) dx -✓fCNa2tb4xtc)2 ) dx
'

'

For an integral involving Va2-b4x
, -

'

'

For an integral involving ✓aft 64*42

try the substitution a- sin
- '(HII),

( or #-) , try the substitution
so that Vaiblxtc)'

① casino = bcxtc) ; O = tan
-' ( b¥

' )
,

so that

-

① atan @ = bcxtc) i
② aws O = Va' - 64×+42 ; and

② a Seco = VaZtb4x-# ; and

③ a cos @ do = bdx - ( N 2.32 ( 2) )

③ asec'D DO = bdx . ( N 2.32 ( t ) )
EXAMPLE 1 : J"oc4d÷pI (€2.33) EXAMPLE : J

, ×zf¥j (E.2.34)"

The above method can be used to

evaluate the integral f: % .

'

'

We can use the above strategy to

Let 2sinO=Bx
,

so that 2wsO=VI-3x2T and evaluate the integral J? .

ZWSODO = Is DX . let T3tanO=X
,

so that S3 Seco = VET and

Then rBseEOdO = dx
.

Then
E- I 0=5'

t.at#=r...E::: t.it#*=r.÷÷:÷:i:÷ .
= seiodo = ztsaenzodo
= tano i . hi? =f÷ 's :# do

X=l

i
. J di =

I

×=o
(4-3×41 4 . Then

, let us since , so that du=wsOdO -

It follows that

EXAMPLE 2 : f!c4x-x' dx (EZ-36)
IF?¥⇒

,

= 9 I:# do
' :

The above strategy can also be applied o -

U=L

to more complex integrals, like I!c4×*g}d× . =/ " I # du

U
-

- I
let Zsino = x -2

,
so that 2wsO=V4xIz and = [ -fu )

"R

'12
2.cos 0 DO = dx . Then

i. hi? =

.

¥! (4x-x4÷dx = /o%CzwsoPC2wsodo)
-

= 1%160,40 do Jfc✓b'(x-142- a2)DX
= Jo"%4ci+wszo5 do

- "
For an integral involving Nb4x-4, try

the substitution O - see
- ' (HII)

,
so that

= Jo
""
4+80,20+40520 do

① asec @ = bcxtc) ;

=/
,

""
4 + 8ws2o -12 t 2.cos 40 do ② atan O = Vb7xtc5-a# ; and

= [Got 4sin2O + Isin 40 ] !
" ③ a Seco tano = b N2.32 ( 3))

i. ¥!C4x-×y÷d× = a- +9¥ .
EXAMPLE : f! dx (E-2.35)

'

'

The above strategy can be used to evaluate

the integral JI VIII dx .

Let 2secO=X
,

so that 2tanO=Jx⇒ and 2secOtanOdO=dx .

Then

¥ivx = taio.s.e.com

=/
.

"'t: do
= ✓
%
sect - I

o
Teco do

= Jo%(seco - coso ) do
= [ lnlsecottanol - sino

i
' J×?VxT = Incurs) - Iz .



PARTIAL FRACTIONS (NZ -37)
'

we can find the integral of a EXAMPLE 2 : f!3×4_ dx (E.2.40)
rational function (where f R g

x3tX
gun

are polynomials ) as follows :
"

"

As mentioned in step ① of the method
,

sometimes

long division is needed before partial fraction
① Use longdiisin

to find polynomials qcx)

decomposition can be carried out ;
and rcx) such that

fix ) = gcx) qcxltrcx) , eg J? dx
.

where deg Cr) s degcg) .
First

,
use polynomial long division to get that

*
if degcftcdegcgl, then qcxto and rcxtfcx) .

×4 - x3t I

② Then
,

note that fg,= qcx) -1 GIFT . 7¥ = Cx-1) t .

and it follows that
Then

,
note that to get

JfT¥dx = fqcxstrgfxtdx . = ¥ + Bit

③ Next
, factor gcx) into linear and * we can always do this !

we need

-x'txt I =
ACXZH) t (Bxtc)

Cx)
.

irreducible quadratic factors .
( MATH 145 1234)

Equating coefficients gives
A-113=-1, CH and A- =L .

④ finally , split g4 into its
"

partial
sowing these equations gives A- I

,
13=-2 and ⇐ t '

fraction decomposition
"

's
Thus

ie write rg¥
'

as a sum of terms J? dx =/? x - I txt - ×¥, -1¥, dx
so that

= [ tzx - x + lncx) - India) + tan
-'
Cx))?

i ) for each linear factor Caxtbk
,

we

i. J? dx = z -Bt In#It .

have the k terms

Al and

¥,
+ III, t - - - t IIIs" "

EXAMPLE 3 : f
,

' 5+44-2×225=-5×-25 dx (EZ-41)
×2(x2-2×+512

ii ) for each irreducible quadratic factor Caxtbxtc)! we
- 's partial fraction decomposition can also be applied

have the k terms in tandem with substitution to solve integrals;
BI

+ 72%1×+4,7 + . . . +
Bk×

eg f ?xstx4-43-2x-sx-25-dx.ca/2tbxtc) (ax4bxt4h -

x4×'-2×+512

eg if gcx) = Xcx
-11342+2×+35

,
then we would write let I be the above integral

.

rgc = (AI) t (¥,
+ ¥2 + ¥73) + (x¥xt5+cx¥xth2) , % 5t×5+×4

- 2×3 - 2×2-5×-25 xtD Ext F
- = AT + ¥2 + ¥xts + Exist

114×2+2×+5)'
and then solve for the various constants . CE 2.38 )

we need

⑤ From here
,

we can solve the integral . x5tx4 - 2×3-2×2 - 5×-25 = A×c×z - 2×+512 + 131×2-2×+512+4×+13)(x'+2×+511×21-1 CEXTHCXZ) .

EXAMPLE 1 : 13×-72 Comparing coefficients , we get that Atc =L ; - 4A+B - 2C -113=1 ; 14A -YB -15C -2DtE= -2;

Z Cx-1)2c×+z,
DX (E-2.39)

-20A t 1413 t 5DtF= -2 ; 25A -2013=-5 ; and 2513=-25.
- !

The above strategy can be used to solve

solving these equations gives A- = - I , 13=-1, C-2 , 13=2
,
E-2 and F= -H '

the integral f! dx .
Cx-114×+2) Hence

First
, we need to find A

, Bic such that
2×-18I = J? -¥ - ¥ +

2
+
-

c¥+z, = IT + ¥72 + ¥2
,

x'-2×+5 1×2-2×+512
d×

or

= J? -¥ - ¥2 + (2×-2)+42 +
(2×-2)-162 dy

X- 7 = A (x-1)(xtz) t 131×-12) t ((X -D
?

5-2×+5 (x
' -2×+55

Equating coefficients, we get that
I =/ ! -I - # t } t.ie#+stcx7IIIsp-cxtfzT+spdx .

( Atc = O
< ATB - 2C =L To compute f dx and f 2×-2
( -2A-1213 -1C = -7 . ×+sadx, make the

substitution u=×2- 2×+5
,

so that du -_ (2x-2) dx .

Solving this system gives us that A- I
,
13=-2 & C= - I .

Then

Hence
, J dx = JAI = lnlultc = In 1×2-2×+51 -1C ;

J! a.I.jo#dx = 1,3¥, - ¥p - ¥2 dx and

I?÷spdx = I# = to = t c -

= [ lncx-D - ¥,
- 'next's]!

To compute f ×z4zd×# and f¥!¥. . make the

'

'

' f! c×¥dx = In(Sf ) - l . substitution 21am @ = × - I
,

so that 2secO=Vx2-2xtT and

2sec2OdO= dx .

Then

✓ ×Iz,d# = J4'2sec = fado = 20 to = 21am
"

) + c( 2secO)
'

and

✓ c!¥#p = /"%Y# = J}e%=f2ws2O do = fltwsczoldo

= Ottzsinczoltc = Otsinowsotc = tan
-'

(XI) -1 + c .

Thus

I = [- lncxltxttlncx2-zxtsi-2tan.tl ) - ¥×+s - tan-4¥ ) - 2,47¥] ?
i . I = INCE) - Lott tan

-'

CI) .



EXAMPLE 4 : I dx CE2.42)

- " Partial fraction decomposition can also be

applied even if the function is not

rational cat first) ;

eg Js dx
.

Seck) - I

First
,
note that

d× = fse seccd×
seccx) - I

-

seccx) -11

= fsec4xl-sec3d×
sec2Cx) - I

= fsec4Cx)-sec3 d×
tan
'
Cx)

:
. fs dx -- f;I¥ dx + fse

seccx) - I tan
'(x ) '

To find J dx
,

make the substitution a- tank)
,

so that du=seTCx)dx
.

Then

I,%n",dx = fcthWt"secd×tank)

=fwu du

= JI tut du
= u - Lu + c

:
. fsenY,dx = tancx) - cotcxltc;

To find J dx
,

make the substitution f- sink) ,

so that dv= cos (x) dx . Then

jYanzdx= I ascdxisinx,
= ✓ costs

(I -sincxllsincx)

= ✓ die
(l -✓2) ✓2

-

Then
,
note that

a.¥ = t t I + Is
Cby partial fraction decomposition) , so that

Is,II ax = +
,

+ Edu
= - tzlnll- ul + tzlnlltvl - I + c

:
. ✓ stand dx = - tzlnll - sincxllttzlnlltsincxl - csccxlt c .

Finally , it follows that

I ax = Is,IIdx+IiII ax
= tank) - cotcxl -

tzlnll-sincxslttzlnlltsincxy-csccxt-c.is/sec3G)-dx=tanCx)-cotCxl-ln/seccxI-tan I - csccx) t C .

Seccx) - I



APPROXIMATE INTEGRATION ( 132.43 Cl))
'

Let f be integrable on Carb] . SIMPSON APPROXIMATION ( D2-45)

Then
,

we can appate the integral -

Let f be integrable on Carb] -

of f on [a,b] by any
Riemann

me 22-1
,

the
' '

nth SimpsonThen
, for some
-

sum

approximation
"

for I=Jabf , denoted by Sn
,

I =/! fix)d× I ¥
,

Hca) Dux ,
is defined to be

where a- Xocx, c
- " cxn=b , Duk Xu-I

- Xu
Sn = §!!! gcx) dx ,and cut [Xu, , Xu ] IKE 41,2, . - -in} .

LEFT ENDPOINT APPROXIMATION (132.43 (z))
where ×m=atbIm V-mefo.is . . .

.
n }

,
and

- :
Let f be integrable on [aib) . gcx) = gkcx) V-kefl.se, . . . . I}

,

Then
,
the

"

nth left endpoint approximation
"

for
where for each k

, gu is a quadratic polynomial
I= fabf , denoted by Ln , is defined to

such that
g.Cx ) gzcx)

be
1
.

Ln = ¥
,

fcxu-1) Dkx '
-

"

" ÷:*
.÷
.

'is:i÷÷i÷÷÷÷÷÷::÷
i

' '

F'
'

7¥
*
'i'¥4

"
I'd.ae

-

we can prove
that

'

F'
'

E'
'

F'
'

RIGHT ENDPOINT APPROXIMATION (D2 -43 (3)I Sn = ¥7
,
H×zu-dt4ff×zu-dtfC×z#gu× ;

'

Let f be integrable on [a. b] . ie

Then
,
the

' '

nth right endpoint approximation
"

Sn = b-na-ntz.fcatb-tczh-211-4fcagb-na-czu-ID-fcatbn.IN# .
for I=Jabf , denoted by Rn , is defined

Pioof . First, note if hcx) = Ax't Bxtc satisfies
to be

a

HC- I)=u, hco)=V and HCl)=w
,
then necessarily

Rn = ¥,fCxn) Dux ;

f A - Btc = u i

ie is:# i :c.

Rn = b
u

flat k)
.

solving these equations yields that A="+w, 13=17
' " '

E
'

and C=w, so that

MIDPOINT APPROXIMATION (D2-43 (4)) I
'

,

hcxidx = I
,
u-wztw-xi-w-I.tv dx

'

'

Let f be integrable on [a,b] .

Then
,

the
"

nth midpoint approximation
"

for
= [ u÷tw×3 + w ×

'
t vx ] !

,

I = fabf , denoted by Mn , is defined = u-2u+ zu

to be
s

'

. I
'

,

hcxldx =uthj-w.mn= ¥
,

f- (×u-I ) Dax ;
Then

, by shifting and scaling , it follows that

iem=÷÷ .
I'ii ¥:*. .=*m+*¥n*⇒ . .at It .
EEE'¥

TRAPEZOIDAL APPROXIMATION ( 132.44)

Let f be integrable on [a. b] .

Then
,
the

' '

nth trapezoidal approximation
"

for
a

I=fabf , denoted by Tn
,

is defined

by

a. ÷nxm¥ ." ;

ie

Tn = §
. ,

flat ch-it ) + ffatbnak)
'

¥
2-.

*note each
"

area
"

is a

'

Note that Tn = LntzRn .

trapezoid :



ERROR BOUNDS FOR APPROXIMATE INTEGRATION (-12.46 )
- "

. Let f be integrable on [a. b]
,

and

suppose
the higher order derivatives of f

exist .

Denote I=[bfcxydx . Then

① then - II E cbIa
a?×9×b If 'CxH i

② IRN - II E cb-za-ntamaf.is/f'Cxll ;

③ Itn - II E Yjn
a?a×¥, If"cxH :

④ I Mn - II s
'bameaxxeblf

' '

exit ; and

⑤ Isn - II s cb
(Sonya? b tf

' ' ' '

CHI .

EXAMPLE : ERROR BOUNDS OF APPROXIMATIONS OF

Jj
'""
sincxldx CE2.47)

'

"
-

we can use the above theorem to find the bounds

on the errors for Lg , Rg , Ms , Ts & Ss on

I =/!
""
sincxldx .

First
,

note that

I = [
"""
sincxldx =/! Iz - 'zwscz×,d×

Then
, for fcx) = sink) ; note that

① f-
'

(x) = Zsincxcoscx) = sin (2x) :

= [Ix - tysinczx,]!
""

② f'
'

(x) = Zoos (2x ) :
i
. I = If - Is .

③ f'
"

(x ) = - 45in (2x) ; and

Next
, when we divide the interval [0, 4¥] into I

④ f'
' ' '

(x) = - 8cosC2x) .
equal sub - intervals

,
the size of each sub interval is It

and the endpoints of the sub- intervals are It follows that

0
, I , If

, Is , 31, II, IT
. If and ¥. ① off If 'CxH =

o?×a¥
,

lsinczxil =L ;
^

-
,

i
t

,

I
' I .

; , i , i

②

077¥ If
"

I = 07×77.gr/2wsczxs/-- 2 ; and
°

F'"⇒ in""

' l l l
l l l

; i i : i i i
③ 079¥ H'

'' 'all =
o? I - fuscus1=8.

i i : : : : iiii.
° I T I 2T 51T IT IT 41 Finally , by the above theorem

, we get that
G J 2 -3 T G 3

For convenience
,

let Axl -_ sink! ① Ilg -II E tf Ya, = TGI ;
Thus

,
the approximations are

② 112g - II Et Yen =
'II ;

① Lg = BIG ¥
,

fcxu
- i
)

3

=

f- (YI - o )(fcot-fCIfl-HEI-HII-HEI-HET-fcti.AE,)
③ ITS' - Il E

, ( 4¥) Cz) = SIGIL ;

= f-(431110+4+2, + It ¥+4 -10+4 )
④ 1ms - II f z÷(451%1 = III ; and

i. Lg = BIT ; ⑤ I Sg - II f ( 4515cg, = 27
5- 3

" -

② Rg = BITE,fCxu- i )
= f-( Cfc tfc It fl tf Hfc It fit

) -1K¥)tfC"If))

= f- ( 45114+7, -1 It } + I, to + I, -13,1

: . 12g = If ;

③ Tg = tzclgt Rs )

= IC '
+ ¥ )

i. Tg = FIT ;
g

④ Mg = big fC×uu)

= If (FC + HI, ) -1 HTT ) -147¥ ) tf Kfc It fCYIz)tfCB⇒
= Ifs+t+¥t¥'t 'zt¥t + E)
*

using the identity since)= Ici- wsczx)) to figure out

the values of f-( TIZ) .
= ( 4- ¥

,
) ; and

⑤ Sg = begs fC×zu_zlt4fC×zu)
3

= IT, ( 4ft ) (fast 4K¥ ) -12ft'S ) -14ft I -12K¥) -14ft +2ft) -14ft + fC¥))

= ,Ig(Otl t Zz -14-1 Zz -11-10+1 + IT )

i. Sg = 43172 -



IMPROPER INTEGRATION
IMPROPER INTEGRATION ON Ea

, b) (132.48 Cl))
'

"

i suppose that f :[a. b) → R is integrable on every
closed interval contained in [a ,b) .

Then the
' '

improper integral of f
"

on [a. b) is

defined to be

Jabf = ftp.fatf .

"

we say f is
"

implying
"

on [a. b)
,

or that the improper integral of f on Each )
"

converges
"

, if fabf exists and is finite '

'

We also allow the case where b=x
,

and in

this case we have

fit = fisnsfatf .

IMPROPER INTEGRATION ON (a
,
b) ( 132.48 (2))

Suppose that f : Ca,b3 -7112 is integrable on every
closed interval contained in Ca

,
b] .

Then
,
the

"

improper integral of f
"

on Carb) is

defined to be

Jabf = fifa )!f .
'

Similarly , we say f is
"

implying
"

on cab ]
,

or that the improper integral of f on Ca,b]

"

converges
"

, if fabf exists and is finite .

'

We also allow the case where a= -N ,

and in this case we
have

t.at -

- Lisle .

IMPROPER INTEGRATION ON Ca,b) ( 132.4813))
'

Suppose that f:(a. b) → R is integrable on every closed

interval in Ca, b) .

Suppose further that for any point ceca,b)
,
the integrals

fact and Ibf both exist and can be added .

Then the
"

improper integral of f
"

on (a,b) is defined

to be

*
the choice of c✓ab f = Jac f t /! f , does not matter !

where ceca,b) is arbitrary .
"

We
say f is

' '

improperly integrable
"

on Ca,b)

when both facf and I!f are finite .



EVALUATING IMPROPER INTEGRALS
'

:
we write EXAMPLE 5 : Jodie-xdx (E2.54)
① EFG)] !! = figf.FM - fight Fox) ;

' "
' In a similar manner

,
we can evaluate

the integral f? e-xdx .② (FG)]
'

a'+ = Fcb) - fi;na+FCx) ; and

③ ( FH)]ab
'

= fifth) - Fcat . CNT2.49 )
✓Fe-×dx = [ -e

" ]?
= o - C- t )

'

Suppose that f: Ca, b) → IR is integrable on every

closed interval contained in Ca
,
b)
,

and assume

'

'

' VI e-×dx = 1 .

that F is differentiable with F'=f on "' b) '
EXAMPLE 6 : Jo

'

In(x) dx (E2.55)
Then ÷

Similarly , we can evaluate the integral
fab f = [Fcx) ]abI . ( NZ -50 ) join d× using the strategy in NZ -50 .

( A similar result holds for functions defined on Taib) J! Ina, )d× = [xlncx) - x ) 'ot
and (a. b) ) .

= C - t) - fi;mo+CxlnCx))
Proof . Choose some ceca,b) . Then

, by the Fundamental
-

= - I - fight
Theorem of Calculus

,
Ctx )

Ibf = fact + J! f
= - t - fight

,

( by L'Honpitais Rule
,

since = E )

=
- I - tinfoil-x )

= stiffs't + ftp.ftf = - i - cos

= dismal ( Fcc) - FG)) -1 fifteen- Fcc))
: ' J! lncxldx = - i .

= figg. Fct) - stiffest
- : fab f = [Faia . Dh

EXAMPLE 1 : Jo
"

¥ (E-2.51 Cl))
'

The above strategy can help us evaluate

the integral fo' dit .
Jo

'

¥ = [Inkblot
= O - C - O)

i. J! = a .

EXAMPLE 2 : J! CE2.51 Cz))
' :

similarly , we can evaluate to DIE by
the above method .

J! = [25×3 't
= 2 - O

i. f! = 2 .

EXAMPLE 3 : Jo
"

d¥ CONVERGES (⇒ pal CE2.52)
' "

-

By extension of the previous two examples, we

can in fact show fo 9¥ convergesifandonlyfpal .

Pneof . The case with
f- I was dealt in E2.50 .

If p
> I
,
then p

- I > 0
,

so that

I
'

= [cpp..]'s -

- C -
p
's ) - C- al -- a ,

and if pal, then I-p >
o
,

so that

s:# =L 3! :c .'⇒ -cont .

and these deductions are sufficient to prove the

claim . DE

EXAMPLE 4 : 179¥ CONVERGES (⇒ p> I CEZ-53 )
"

similarly , we can prove Jiff converges
ifyIi psi .

Pref . when p=l , then

17¥. = f!# = (Inc.nl?=o-o=ao-
When

p
> I
,

then
p
-I > O

,
so that

ITTF =L 17=01 - C-⇒ = # .

when pal , then I -p >
0
,

so that

riff -- I K -

- can - Cfpl -- o ,

and these deductions are sufficient to

prove the claim . Da



COMPARISON FOR IMPROPER INTEGRALS (T2-56)
-

'

Let f and
g

be integrable on any closed intervals

contained in Ca
,
b)
,

and suppose further that

Of fcx) EGG) theca,b) .

Suppose g
is improperly integrable on carb) .

Then so is f , and

Jabf e fbag .

On the other hand
, if fabf diverges, then

✓bag diverges as well .

( similar results hold for functions f & g defined
on half -open intervals . )

EXAMPLE 1 : Jo"Z✓secc×Td× CONVERGES (EZ-57)
'
"
-

Using comparison, we can show that Jo"YsecCxTdx
converges

.

Puff . First , note V-xeto.IT, we have that coscx) > I -÷×,
so that seccx) E ,÷× ,

and hence VSECCXTE ✓
.

Let u
-

- I - Ex, so that du= -÷dx. Then

I,÷v¥⇒dx -

- fi?- Izitdu
= F-Tut ) :

i : LEE ÷×dx= IT
,

which is clearly finite .

It follows by comparison that Jo"VsedxTdx converges . Dq

EXAMPLE 2 : Jodie-*dx CONVERGES (EZ-58 )
'

:

similarly , we can show Ife-" dx converges using
comparison .

Pef . First
,

note for the [0,0)
,

e
"
> Itu ; hence

ex's, I -1×270
,

so that e
-Ff ¥2 .

Then
,

since

Jiffy = Clarion): EE ,

which is finite , we see that Ife-Rdx converges
by comparison . Dh

ESTIMATION FOR IMPROPER INTEGRALS (T2-59)
' "

Let f :(a. b) → IR be integrable on

any
closed interval

contained within Ca
,
b)

.

Suppose Ifl is improperly integrable on Ca,b) .

Then so is f, and in this case

I fabf I f fab Ifl .

(similar results hold for functions defined on

half-open intervals ) .

EXAMPLE : fod sin)d× CONVERGES (E2.60)
'

"

Using estimation
, we can show that ffsin¥d×

converges . u=¥ V=tx
Pweof . we show J'osindx and f- sincd× converge

.

Next
, integrate by ports using (du=-¥d× dv=¥zd×

) to get

First, since fight = , by the Fundamental Trigonometric Limit
,

I? sin¥dx = [-05¥]? - f? d×

the function f = It , ×=0
is continuous on 2913

, i
. J? sink) = cosa) - J? cosh)since' , x >o T dx -×z dx .

and so by Tl -17 fcx) is also integrable on [O ' '] . Then
,
since I / Ext and I?It converges , necessarily f? I dx

converges
too

Then
, by the Fundamental Theorem of calculus

, J! fcxldx is

by comparison
.

continuous for recoil]
,
and so

Hence
, by estimation

, J? dx also converges .
J! "dx= rhjmotfr

'

sing'd×=fi→mo+f!fad×=fffCxidx , Finally , since

which is finite , so f! sind× converges as well . J! sin dx = Jo
'

sin dxt f? sin¥d× ,

and both f! sind× and f- sin are finite, it follows that

Joo sin dx converges , and we are done
. Da



Chapter 3:
Applications of the Definite 
Integral
AREA BETWEEN CURVES (173.2)

EXAMPLE 3 : AREA OF A CIRCLE OF

'

Let f. g
: [a. b) → IR be integrable with

RADIUS r (E. 3.5)

f-Cxlfgcxl the Carb
] - to calculate

'

We can use a similar method

the
"

area

"

of the region
Then

,
we define circle with radius r .

the area of a

R given by

a EXE b
,
fcx) Eye gcx

)

"

i:* . ." .
I:i¥i

"

÷÷÷÷÷:÷÷÷÷÷÷÷÷.
Of xfr , 0EyENr2_xT ,

" so that the area of the circle is

f-Jabcgcx) - ftxlldx .
A = 4J!jr dx -

rsinO=x, so that rcosO=✓r⇒
EXAMPLE 1 : AREA OF REGION BETWEEN make the substitution

and rcosOdO=dx to get
that

x- AXIS AND y
-
- I -X
' ( E3-3) o=%

^ A = 4J russo ( rwsodo)
' "

.

We can use the above formula to 0=0

calculate the area of the region = 4%42 ( '

z - tzwszojdo cby the double angle formula
)

between the x-axis and the c.it///,#?, .×
,

= ryyhcz.za.su , do
parabola y

-

- I - XZ .
=
r
' -120 - 25in 20 ]

Note that the region
R is given by

= TIM .

- I Exel
, OEYE I -X? i. A

so the area is EXAMPLE 4 : AREA OF REGION BETWEEN

A- =/! Cl -xzldx = (x- #Ii = 45 .

y=×
- I & y2= xtl (E3-6)

EXAMPLE 2 : AREA OF REGION BETWEEN ÷
. we can find the area of the region

between

y=x2-13×+2 & y=x3 -3×+2 (E3-4) the curves y=×
-I and yZ=xH using

a

similar method .

'
"
'

similarly, we can use the method above

to calculate the area of the region To find the area of the
A ,

between the curves y=x2-13×-12
and region , we consider two

,,gy, ,
,

parts separately : 11/1
'

y
-_x3 - 3×+2 .

4
( TX ) This is the region defined Az

at fcx)=x2t3xt2 and gcx
)=x3-3×+2 .

µ,
,y/l

"

R

by
Then

,
note that

- IEXEO
,
I EYE NxtT .

fu) - guy
= +3×-12 ) - 1×3-3×+2) It follows that

= -R- XZ- Gx ) A
, =/!VxtT - C-Nxt ) DX

= - XCX-3)Cx-12)

and so fcx) .-gcx)
when ×=9×⇒ "

d " " '

=/! 21×+1/2 dx
Moreover

, fcxyzgcx) that-052]U[013] and
= [÷c×tD% ] ? ,

fcxlfgcxyV-xe-L-2.HU [3.
N)

'

i. A
,
= Iz .

Then
, from the diagram ,

observe that

( ) This is the region defined
A =)? cgcx)

-fix) ) dx + J! (fat -941)d× by
OEXE 3 , X- IEYENXTT .

= J:(x3 - x'- Gx) dx + Jfc-xrstxtbxldx
It follows that

= [4x4 - 3×3-3×2 ] : t [-4x4 -1×31+3×2]
!

Az
-

- J! NXT - (x - t) DX
=
253

A Tz -

= cxth
}
- tzxtxl !

= I
6

.

Hence
,
the total area of the region

is

given by

A = Ait Az

= Is +
'ft

: . A = Iz .



VOLUME BY CROSS-SECTION

suppose that a solid S lies in

ng
VOLUME OF A SPHERE (E3- Il)

space between x=a and ×=b
, Similarly , we can find the volume

÷: " :÷÷÷"÷::÷:÷:÷:÷:
"

x

÷÷÷÷÷÷:÷÷÷÷:÷:
""

'

'

Atx)

'

We can approximate the volume of
'

Hence
,
the volume of the sphere

S as follows :
is

① Choose a partition of [a,b]

acxocx, C
- - - cxn=b , V = 2)or T(irI DX

with corresponding sample points r

= zq[r2× - 13×3 ] !
CKE ( Xu -i , Xu

] the II. 2 , - . .

.
n } . T

② Divide the solid into strips , where
,

>
×

i V = Fitr's .

VOLUME OF A
"

FOOTBALL
"

(E3- 12)
the Kth strip lies between x

-

- Xu- i

Y ' !
We can use the same formula to

and X --Xu and has thickness

calculate the volume of the

③ 7h:!,=nIIe
- "

III't the total volume

,

×

"

football - shaped
"

solid s which
-

is

obtained by revolving the region
R

of S is equal
to

a

given by
✓ = I
,

Dnv I ¥
,

Aku)Dux - ( N 3.7)

www.ic.ycross-sea-onax.si ÷÷÷I:
'

"÷a;
" """' t÷÷÷÷÷"

he solid is
'

Suppose that a solid S lies in space
between

hence given by
×=a

and x=b , and that its cross-sectional

is equal
to ACH ,

where
✓ =/! IT sink) =/ TCI - tzcosczx))d×area at x

Atx) is integrable on
[" b) .

= IT [Ex - Iysinczx))
the

' ' volume
"

of S to be

Then
,

we define : . V = TI
z -

✓ = diff ÷
,

Aku) Dux
,

VOLUME OF GABRIEL'S HORN (E3-13)
' "

Gabriel 's horn
"

refers to the solid S obtained
or alternatively ,

by revolving the
region R given by

✓ =/! AG) dx -

l Exc o
,

OE y Ext n

VOLUME OF AN
''

ANNULUS SOLID
""

(E3-9) around the x-axis .

- "
. Let f and g

be integrable on
[a' b]

n yfcx
) Then

,
the volume of Gabriel's horn

I is just
with O' H' IIe

"

Teg!:[
" bi? the g.plane

""

v-ji-fxzl-titt.IT -- T.

Let R be

Note that Gabriel 's horn has infinite surface
given by %

,
! .

aexeb ,
fix) EYE 9

")
area

,
but only finite volume . ( 123.14)

and let S be the solid obtained by
VOLUME OF INTERSECTION OF TWO CYLINDERS

revolving R about the x-axis .

⇐3.15)
' Then

,

the area function
at position

x

'

Finally , we can use our formula to calculate the

is given by
volume of the solid given by *Yer!

A- Cx)
= ITCEGCXD

'
- Efx) ]

'

)
.

XZTYZERZ
volume of S is Etter? at

y
so that the

To find the cross -section at

- × x'tzer'

v
-

- sina.mx -
- I:" ''""""" d" x

;÷.no?.sai::oth:tsecnIh:
VOLUME OF A CONE (E3- 10) is given by jerk & ....

.-
i
'

C \ y

- ! Note that a cone with base radius r and z2erz - x?
"

height h can be obtained by revoking the
or equivalently lylEVr⇒ and

v

a 12-1 E Vr2_xT
,

triangular region R given by

÷÷÷÷÷÷÷÷:÷÷.÷t÷÷:
"

i:c:*:÷:S:* :i:÷:
"

: :# sin

A-(x) = [2k¥]
'

=
462×2) .

ume of
( since the square

has side length
2M¥ . )

the cone is

It follows that the volume of S is

✓ = for IT (Ex)
'

dx

✓ = !! Acxldx = [ 442×2)dx=4[r2x - tzx3Ir= Er!
= i¥s :

: . V = ztTrZh .



VOLUME BY CYLINDRICAL SHELLS (N3.16)
suppose that f and

g
are integrable 9 VOLUME OF A

' '

BOWL
"

(E3- 20)
on [a,b]

,
with fcxlfglx) V' c- [a' b] - / gcx) '

'

we can use similar reasoning to find

Let R be the region in the ×]
- plane

.
.
.
-
- - - - -

-

;! fix, the capacity of a

"

bowl
,

"

which is the

given by
" t

solid obtained by revolving the parabola

aE×fb
,

fcx) E y EGG) y=x
'

with oexez about the y-axis .
n

ya,

are jet .su?:.tYnesLa..mainedbi#/!-;evoiumeotthebowiissim r

.
✓

✓ =/!2Tx (4 -X' ) DX
We can find the volume of S by

= T, -14×2-12×4] !
the following : : . V = 81T.

① choose a partition of [a ,b]

a=xocx, c
- - - c ×n=b , VOLUME OF A TORUS (E3-21)

with corresponding sample points ' "
: A

' '

tones
"

can be obtained by revolving

CKE [Xu- i , Xu] theft, 2, - '
'in } . the disc D given by Image soiree :

The coordinate system d paanetisaticn

② Divide the region into
"

ships
"

, ( × - Rp + y2 E r
"

oafnaa
.

circular tons of radii R

wth ship Ru is given ( ResearchGate )
where the about the y-axis .

by

Xu, E XE Xu , f-Cx) EYE g(×) . The disc D is given by ( in this diagram, flip
the

y d z axes)

③ Revolve each strip Rk around the R - r EXE Rtr
,
Wr2_cx fyejr-cx.AT,

y
-axis to create cylindrical

"

shells '
'

.

so that the volume of the torus is

④ Note that these shells approximate V=
ztix - 2VrHx-# dx .

the total volume of the solid -

-

let rsino : x -R
,

so that rcoso -

- ✓r
'
- Cx -R)

'
and rwsodo' DX ,

the teth shell
⑤ Then

,

the volume of to get
is

Dnv I 2TCu(gccu) - fccu)) Dux,
✓ = 4T×VEhdx = iitcrtrsinolcrcosolcrwsodo)

so the total volume of the solid is
=

4h12 Rwszo + rsinocosodo

✓ I n Dnv =

2Icucgccut-fccuhbux-4-rl-RCIO-tysin207-rzws3OJI.kz
i
. V = 2177212 .

VOLUME (BY CYLINDRICAL SHELLS) (133.17)

'

Suppose that f and g are integrable on [a. b)

with fcx) Egcx
) the Ea, b)

,

and let R be

the region in the xy
-plane given by

a Ex Eb
,
fade yfgcx) .

Let S be the solid by revolving R about

the faxes .

Then
,

the
"

volume
"

of S is defined
to be

✓ =/! 2TixCfC×) - gcx)) dx -

VOLUME OF A
''

DISCUS
"

(E3- 19)
- ! Let s be the solid obtained by

revoking the region R given by
y

aw: 't: jaws .
- """ " o"" if z

The volume of S is

""'

✓ =Jo%2Tx[coscx) - C-cos dx - Iµy= - costa

i. V
-

- Jo
""
Lltxcoscxldx .

-

To solve this integral , integrate by parts using

a- X

(data. aiiiiiiiia ) to get
that

-11/2

✓ = 41T (xsincx) - Jsincxldx] ,
= 4TI[ xsincx) - coscx ,] Ik

i . V = 2172 - 41T.



ARCLENGTH (N3.22)
-

Let f be differentiable on [a,b]
,

or let f

be differentiable on Ca, b) and continuous on

[ a,b] .

Let C be the curve y=fCx) with afxeb .

'

We can approximate the length of C as

ya

follows :

① choose a partition of E"" Lurk"

a = Xo Cx ,
C . . . C Xn = b .

② By the mean wage Theorem
,

there e×µ.# ×

sample points cue Exley , Xu]
such that

✓

f'(cu) =

f(×u)-fH
=
Did

Xu - Xu, Dux
-

③ let cu be the part of the curve C

from Xu-I Exfxu ,

and let Du be the

line segment from (xuy.fcxu.pl to Cxu , fka
)) .

④ Then
,

note that the total length of Cu is

approximately equal
to the length of

Dui

ie

Duh I
l Dul = VcDux5-Cduy

=Jlt(fff⇒ - Dux

i . But = j1+[fy . Dux ,

so that the total length of C is approximately
n n

-

L E E duh = [ Vlt [f'Cca) ]2 . Dux .

U-- l WII

LENGTH ( 133.23)
"
" Let f be differentiable on [a,b7

,
or let f-

be differentiable on (qb) and continuous on

[a. b) .

Then
,

we define the
"

length
"

,
or

"

arclength
"

,

of the curve y=fC×) from x=a to x=b to be

( = JabVltf dx -

RECTIFIABLE ( 173-23)
! we say

that f (from x=a to x=b) is

"

rectifiable
"

if its arclength from x=a to

x=b is finite -

EXAMPLE l : LENGTH OF y=xZ (E3-24 )

'
"
'

Using the above formula, we can find

the length of the curve y=×2 with OEXEZ .

let fcx) = x2 , so that f'Cx) -- 2x . Then
,
the length

of the curve is

( =/! VHf4xTdx =/!ji-4xTdx -

To solve this integral , let 2x -- land so secO=✓H4xT &

SECZODO = Zdx to get

µlt4xTdx = J 'zsec3O do
= tyseccetanotfzlnlsecottanol to

= tzX✓lt4xTt # In 12×+1+4×71 tc .

It follows that

L -- J!jit4×Tdx = [tzXNH4# t tylnczxtrhtyxz)) !
= Tft -141hL4th) .



SURFACE AREA (N3.26)
AREA OF A SPHERE (E3 - 30)

'

Let f- be differentiable on
Ea,b]

,

or let

(a,b) and continuous - 's Note that a sphere can
be obtained

f- be differentiable on

by revolving the curve y=✓rz_×T
with

on [a ,b] .
in the Xy

-

- re xsr about the x-axis -

let c be the curve

with aexfb ,
plane given by y=fC×) let fc×7=jr2-xT , so that f-

'
G) = -

,

be the surface
obtained by

and let S so that

revolving c about the × - axis .

Nitf# = ✓l-¥ =
= ¥7 .

'

We can approximate
the area of S by

so
,
the area of the sphere is

the following :

A = ftp.2kfcxwitfcx#dx
① choose a partition of [a,b ]

a = Xo CX ,
L . - - C Xn L

b .
= [ 2TWr .

dx

② By the mean Value Theorem
,

there

=

J ztirdx
exists sample points cut [Xu-i. Xu

]

such that i . A = 4Fr
?

Buy

fccu, =
H×""

"

= Tux .

AREA of A TORUS (E3-31)
Xu - Xu- I

③ let Ca be the part of C with - 's

similarly , half of a

"

torus" can be

Xuyf XE Xu , and let Su denote
obtained by revolving the curve

the
"

slice
' '

of S which is obtained
-

with R - re × E
Rtr about

y
-

- ✓ r
'
- ( R - x)

'

by revolving Cu around the x-axis .

the y-axis .

Let Dk be the line segment from
- (x -R)④

Let fcxt-jrZ-lx-RT.su that f'G) = = ,

(xuy , fcxuy) )
to (Xu , flxu)) , and

✓r2- ( x-R) '

a
cone so that

( et Tu be the slice of # -
jHf =

wit
c = JI = r=

.

obtained by revolving Dh about the
r2- ex- RT r

'
-ex-1212 Vitex-RH

It follows that the surface area of the torus
x -axis .

is
Rtr

NY A- = 2)
r . .

2Tx - v÷zpId× = 4117!!vf.FI#,.y=fCx
)

"
Make the substitution rsino -- X - R , so that

roos O -

- ✓rZ-Cx and rwsOd0=d× .

Then

+
A -

- turf
"""

=4arf "www.roso-ao
X- R- r o= -I rcoso

2

⑤ Then
,

the area of the slice Sh is
= 4Th ( Rtrsino ) do

approximately equal
to the area of Tu ,

= 4Kr[RO - rago]
So that

Dua
I Tiffany ) + flxu))Dal ( using the formula for

i. A = 4T2rR .

the area of a cone

( NZ - 35))

-
= IT ( fcxu -it fcxullvltfccu)

'

Dux

.

'

. But I 2Tfcculjltf.cc# Dux ,

and it follows the area of S is approximately
equal

to

A = ⇐ DUA I ¥
,

21Tfkulvltf.CI Dux .

AREA ( 133.27)

'

"
s Let f be differentiable on Carb]

,
or let

f- be differentiable on Ca
,
b ) and continuous

on [a,b] .

Let C be the curve given by y=fcx)
with

a Ext b
,

and S the surface
obtained by

revolving C about the x-axis .

Then
,

we define
the

' '

area
"

of S to

be

A =/! 2TIfCx)Vltf'# DX .

*

if the curve is revolved about the y-axis

instead
, replace the f- Cx) with x .

( D 3.29)



MASS & DENSITY (E3 -32) FORCE
-

Suppose a rod lies along the x-axis PRESSURE EXAMPLE (E3-34)

from x=a to x=b
,

with linear density

( mass per
unit length) equal

to pcx
)
,

where pcx) is integrable
on [a' b] -

Along one of the ends of the tank
,
consider

a thin horizontal slice at position y of
'

we can approximate the mass of the

thickness Dy .
rod as follows : The slice is at a

''

depth
"

of "47.

So the

pressure
at all points on the

① choose a partition of [a ,b]

a = xocx , C - -
- C ×n=b slice is P = pgh = pgC4-y) .

with corresponding sample Points The width of the slice is equal
to dry .

So the area of the slice is

CUE [Xu - I , Xu]
.

DA = 25g By ,
② Then

,

the mass of the part of

so the force
exerted by the water on the

the rod between X=xw,
and X=Xk

Slice is

is approximately De = PDA = pgc4-y)
- 25g Dy .

exerted on the
end of the

Dum I pcculdux , Hence
,

the total force
tank is

so that the total mass of the rod

is F -- do
"

egc4-ys.org = pg )! 8g : - 2g} dy
m
-
- E. bum = Ezekiel Dux .

= eg[
'Tj - ¥y{ To

MASS (E3- 32) : .
F- = 2,7ps .

'

Suppose a rod lies along the x-axis

CHARGED ROD (COULOMB'S LAW) (E3-35 )
fwm x=a to x=b , with linear

density pcx) , where pcxs
is

integrable on [a. b] .

Then the
' '

mass
"

of the rod is

M = Jab pcx) DX . first , consider a small slice of rod at position
×
, of thickness DX .

MASS OF A SPHERE WITH
since the rod has length

2
,

the charge per
unit

VARYING DENSITY ( E3-33)
length is I so that the charge on

the

2 i

' "
suppose

that a ball of radius R has

slice of the rod is DQ = { DX .

varying density , such that the density

Then
,

the distance from the slice
,

which is

of each point r units away from
the

,
to the small object (at

(2,1))
where at position (x. o )

origin is equal
to pcr) ,

per
, is integrable on [ O' r] . is

,-

the ball r = ful = ✓ (2-x)
'

-11
,

we approximate the mass of
so that

as follows :
IDF I =

KE ' FAX
O -- roar , c

- - - Crn=R of [0,127 , -

Choose a petition (2-x)'t l .

with sample points cut [ ru-i. ru
] .

Next
, by similar triangles , the x & y

-components of the force
Divide the sphere into spherical

shells using
exerted by the slice on the object are given by

concentric spheres of radius ru .

Then , the volume of the teth spherical shell

DFX = DF =
kqdC2-x)A#

is ✓(z -x)'t , 2. (( 2-X)'t 1)
"Z

Dnv I 41TCu
'

Dur ,
&

so the shell 's mass is

Dey
= y¥ DF = 2%7%7×7,45 .

Dum I pccu) Dnv
I pccu)

- 417cL Dur .

Hence
,

the total mass of the sphere is
It follows that the x and y

- components of the total force

M -

- J! 4tr- per) dr - are

F×= )!HE't dx242-44113/2
and

Fy
-

- I!Y!÷¥d× .

Solving ,
we get

that the total force exerted by the rod

on the object, expressed
as a

vector , is

F- = (Fx , Fy) = tzkqdcl -Fs . Irs ) .



WORK
TANK EXAMPLE ( E3-36)

consider a thin slice of liquid at position y
of thickness Dy .

The slice is in the shape of a thin

rectangle of length e- to ,
width w=2ry and

thickness Dy , so it follows that its volume

is

DV = 20kg Dy .

Hence
,

its mass is

DM = PDV
= 20 pry by .

Then
,

all of the water in this slice must

be raised from height 4=4 -y
to height hz=4,

so that the work done
"

raising
"

the water

in this slice is

DW = ghbm
= 20pgC4

-glory by .

It follows that the total work required
to

pump
all of the water in the tank is

W =/!20pgC4-yhrydy = zopgttzy
?
- EYE]!

2560

: . w= 3- pg
.

CHAIN EXAMPLE (E3-37)

Note that for a thin slice of the

chain (when it is lying on
the y

top half of the circle ) at position

• of +niches, go , the mass of

the slice is

DM = TMTDO ,
#

x

and the height
above the x-axis is

y= It
Sino ,

so that the work
done is lifting the slice from

the x-axis is

Dw = gy
DM = Jtfcitsinolbo .

It follows that the total work done is

W =/! T.TT citsino) do
= STILO -cost]! ' TICH .



Chapter 4:
Parametric and Polar Curves
PARAMETRIC CURVES
GRAPH CD4- t)

Example 2 : 3D SPHERE ( 124.3)
' ! Let f : I -71122 , where I is an interval

'
"
- similarly , we can assign

three
"

definitions
"

of IR .

"

graph
"

of f , denoted
to the equation describing the sphere of

Then
,

we define the

radius I centred at co, 0,0) :

as
"

graphCfl
"

,

to be the set

① The sphere can
be defined implicitly by the

graphCfl
= 4cx, fcx)) : XEI } .

CURVE IN 1122 / EXPLICITLY DEFINED CD4. I) equation
- ×

'
+ y
' -172=1 i

set of
' ! Let f : I -71122 , where I is an interval

② The sphere can be defined explicitly by the

1

of IR .
equations

f is a

' '

curve in R2
"

Then
,

we say qz=Vi-x-yT ,
lxkl

,

'
y 't

'

if f is continuous . -

- 2- = -✓ I -x
'
-yr , 1×111

, lyle l ; and

'

In this case
,

we say
the curve is

③ The sphere can be defined parametrically by the

defined
' '

explicitly
"

by the equation
-

equation
y=fCx) . (×,y,z)

= (cos Orsino , sinosin0.ws
)
'

I IMPLICITLY DEFINED CD4- l)
" latitude

"

and of the

NULL SET - where O denotes the

-

Let f : U -7112 , where U is a
"

longitude
"

of the sphere .
connected set in R2

.

O C- [0,21T ) and ¢ C- [0, IT ] ,

Then
,
we define

the
' '

nu" space
"

of . we let

Nullcfl , to be the
such that 01=0 at the

' '

North Pole
"

f , denoted by
and f- IT at the

"

South pole
' '

.

set

nullify -_ dccxyleulflxiy)
-

- O } . EXAMPLE 3 : LINE SEGMENT (E4 -4)
'

Note that when f is continuous . Nu"
-

Given two points a
,
be R2

,
the line segment fwm

is typically a curve in R
'

"
a to b can

be defined parametrically
the curve is

in this case
,

we say by
defined

"

impiety
"

by the equation
p

= fee, = attcb
-a)

,

OE tf t -

f-Cx,y)=0 .

RANGE /IMAGE /PARTll DEFINED (134.1)
EXAMPLE 4 : CIRCULAR ARC ( E4.5)

' ! The arc of the circle of radius r centred

'
"
- Let f : I -71122 ,

where I is an interval

defined parametrically by
' at Ca,b ) can

be

in R
,

be defined by fct) -- (xctt , yet)) .

Then we define the
"

range
"

of f ' ( ×, y)
= ( atrwsctl , btrsinct))

,

of ftp.

denoted by Range Cf
)
,

to be the set

where 4. PER are arbitrary .

Range Cf) = defect) ITEI} = cilxcthycthltc- I } .

'

When xct) and yet) are continuous ,

Range Cf) is typically a curve in RZ ;

in this case , we say
the curve is

defined
' '

parametrically
"

by the equation

p= ( x. y)
= fct ) ;

or by the set of equations

p=Cx,y ) : x - xctl , y
-
- yet) ,

where t is called the
''

parameter
"

of

this equation .
EXAMPLE 1 : 217 CIRCLE ( E4.2)

'

"
: we can assign three

"

definitions
"

to the

equation describing a circle of radius I

centred at co , o) :

① The circle is defined implicitly by the

equation
x't y
'

= l ;

② The circle is defined explicitly by
the

set of equations

{ y=
VII

,

HIE l

( y = -VII ,
1×1 E l i and

③ The circle is defined parametrically by the

equation
( x.y)

= (coset ) , sink)) , Of tf 21T
.



SKETCHING PARAMETRIC CURVES (N4.6) fct) REPRESENTS POSITION OF A
-

'

To sketch a parametric curve
,

we can

MOVING POINT (N4.13)
simply make a

table of values and

If we take t as time
,

then the

plot points .
i' ' ' parametric curve (x. g) = feet

-_ ( xct)
, yet )) represents

EXAMPLE 1 : ALPHA CURVE ( E4.7)
-

'

Ii: The ' '

alpha curve
"

is given by the the position of a moving point -

parametric curve ( x. g) = ( t
'

,
t
'
- Zt) . ( 174.9 )

EXAMPLE : CYCLOID CELL- 14)
t x y
- Z 4 -4

'

A
' '

cycloid
"

is the curve generated
-k 2 o

by a point on a circle in the
- l l l S

° ° °

×y
-plane which rolls ( without slipping) r →

l l - I
r

k 2 o about the x-axis -

t

2 4 4

' ' " we can use this to find the

EXAMPLE 2 : FIGURE EIGHT CURVE (E-4.8)
parametric equation for a cycloid .

'

'

The
' '

figure eight
' '

curve is given by

( x. g) = ( since
'
,
25in't" ' CD4 -9 )

at the circle be described as in the diagram ,
the parametric curve

and suppose
it rolls with speed s .

t x y
° ° °

let the point in question be the origin (90)

17/6 5312 I

17/4 I T2
on the circle .

17/3 5312 53
be at position (stir) .

The 0 2 Then
,
at time t

,
the urine will

2h43 -53/2 53
344 - I r let D= Oct) be the angle through which the

5146-53/2 I
circle has revolved about its centre at time t-

IT o 0

PARAMETRIC→ IMPLICIT (N4-10) since the circle revolves at a constant rate
,

necessarily Oct ) = Ct for some constant c .

'

Sometimes , we can
"

eliminate
' '

the parameter
in a parametric equation to obtain an Moreover

, since the circle rolls without slipping .

it makes one face revolution about its centre when

implicit explicit equation for the curve .

-

EXAMPLE 1 : (x.g) = ( Etl,
t's ) (E4.tl ) xcH=2Tir;

hence St = 2Tm when Oct) -_ 21T i
"
For instance , we can eliminate the parameter

ie et -

- 2T, when t=2TY, so that c
-
- E .

in the equation ( x. y
) = (Etl , t3) to find

the curve -

the circle is at Cst
,
ol -- (ROCH , r)

an implicit equation for Next, since the centre of
Note that x

-
-Etl

, y=t3 ⇒ (x-113--443=4--5' at time f
,

and the circle has rotated (clockwise) BT

so the curve is given implicitly by
the angle Oct) -_ It ,

[ = """ '

it follows that the point on the circle originally at 010)

EXAMPLE 2 : (x.y
) = ( sink) , seat)) (EY'll) will have moved to the position

'

s we can use a similar method to extract
(×, y,

= Croce) , r ) - ( rsincolt))
,

rws (Oct))) -

the implicit equation for the curve defined
we use O as our parameter , and write this as

parametrically as
ix. g) = Csinctl ,

seats) .

( Ky)
= Cxcol

, yco) )
= ( ro , r)

- Corsino , rcoso)

Note that

y
'
-

- Sedat = w÷, = ÷yt, = ¥2 '
⇒ ( x. y

) = rco - since , I - cost),

or use t as our parameter instead and write
so that

y
'
= is the implicit definition

( x. y
) = ( xctl , yet))

= Cst
,
r) - Crsin (Et) , rws (ft)) .

for this curve .

EXAMPLE 3 : ALPHA CURVE ( E-4.12)

' ! We can
do similarly to find the implicit

equation of the alpha
curve , defined by

(x. g)
= ( t

'

,
t
'
- Ztt .

Note that

y2= ( t
's-242 = tb- 4th-14T' = x3 - 4x2t4x

⇒ y
'
= x ( x-25.

EXAMPLE 4 : FIGURE EIGHT
CURVE (E4.12)

' ÷ we can do similarly to find the implicit

equation of the figure eight curve , given by

( x , y
) = ( sinczt ) , Zsinct) ) .

Note that

×2= Sinan
= 45inch wilt)

= 4sin4tl( I - sink))

= y
'll - ( Yz)

' )

= ¥514- y
' )
,

so that the implicit definition for
the

curve is

x
-
= ¥542-ylczty

) .



TANGENT
EXAMPLE 2 : STONE PROBLEM ( E4.17)

TANGENT VECTOR (134.15)

'

'

Let (x. y)
= fct) = Cxctl , yet)

be a

parametric curve .

Then
,

the
' '

tangent
vector

"

to the curve

at the point where E- to is the vector

f'( to) = (x'Cto
)
, y

' (to" ' put r=÷, & silo into the parametric equations

LINEARISATION CD4- 15 ) to get
(x , y)

= ( lot , I, )
- ( lysin ( Yott , I,ws(4ot ))

' ! Let ( x.y
) =fCH= (xctl , yall

be a

and
- tosin ( 40T) )

parametric curve .

( x
'

, y
' ) = ( 10,0 )

- ( lows ( 40T ) ,

Then , we define the
"

linearisation
' '

of

Then
,
when t=¥zo , the position , velocity and speed are

f at t
-

- to ,
denoted by

Lct) ,
to

p
= cxiy) -

- CTI
.
'T ) - ( Ig . 's ) = ( FT - Is, f) i

be the function
✓ = (x

'

, y
' ) = ( 10,0 ) - CS , -553 )

= ( 5,553 ) ; &

Lct ) = f- Cto ) t f'Cto)
(t - to) .

VELOCITY / SPEED /ACCELERATION
CD4- 15) Irl = Vcxy2+cyT = vzstts = to .

- '
.

Let ix. g) = Htt
-

- Cxctt , y
't't be a

''

DERIVATIVE
''

of X -COMPONENT OF

parametric curve .

PARAMETRIC EQUATION (N4.18)
suppose

t represents time
,

and fit)

represents the position of a moving -

"
-

consider the parametric curve cxiy)
= Fct) = (Htt . yltt)

point . with reefs .

Suppose we can
eliminate the parameter , and

Then :

express
the curve in the form y=gCx) .

① The
''

velocity
"

of the point at

time t is equal
to Then

✓ = f'A) = ( x'
CH

, y
' ( t)) ; ① yet ) = gcxct) ) i

② g' Cxctll = 9¥ ; and

② The
' '

speedy
"

of the point
at

jet,

time t is equal
to

③ g'
'

wth = Itt 'Ii)

( v1 = If 'lHl ;
and It

'

PIF. ① follows by construction .

the point
at

③ The
" acan

" of
Take the derivative of both sides of ① Wrt t to get

time t is equal
to

get , = [glxcth]
'

= g' Cxtt)) x'
't)
,

a = f'
'Ct) = ( x'

'

Ctl
, y'

'

Ctl)
.

So that

EXAMPLE 1 : TANGENT TO ALPHA
given

=
Y Vitello ,
x' H)

CURVE (EU- lb) proving ② -

above to find both sides of ② Wrt t to
'

s we can use the formulas
Then , take the derivative of

the tangent
to the alpha curve where

get
f- I . get , = [ g'Cathy

'

= g
"lxttHx'CH = dat ( IIIT )

,

Recall the equation for the alpha curve

is ex,yi= a'it
' -2T ' - or

g. we,, =
Etc !t¥ )

-

F

first
,
note that Cxc" , y "

" = ( t
'
- t )

x'Ctl .

Next , pwning ③ . 18
dx

at
= 2T & date = 3t2 - 2 .

EXAMPLE :
' 'DERIVATIVE

' '

OF THE FIGURE EIGHT

It follows that

cacti
, y'All = at

,
3T
'-21

, CURVE ( E4.19)
so that

'
"
- consider the curve ( x.g) = Csincztl ,

25inch .

( ×.ci) , y
'll)) = ( Z

'
')

'

the curve with
- Tty ft '' ¥,

the line through suppose
the portion of

Hence the tangent line is

with - lexfl .

( i , -
it in the direction of the vector C ' ' " '

is given explicitly by y=gH)

the formulas
above to find

This line has slope
I
,

so its equation
is

Then
,

we can use

yti-tzlx.it , g'(Ez) and g'
'

( Iz) -
or

y
-

- Ex - I -

first, note that for
- If Etf ,

we have

xctl -_ Ez ⇐ sincztl -_ Iz c⇒ t=If .

Moreover ,

( xctl , yet) )
= ( sincztl , Zsinct) )

⇒ (x' Itt , y
' ft )) = (2wsC2t ) , 2wsCt))

,

"

gents, = ,
-_ IIIT,

and

games, = ¥C¥I÷) , a¥C%# =

-

sincttwscu-I-2wsctlsincztl-7.ws
(Zt) 2ws3l2t) .

Put in t=I to get

g'CEI = %sI = rs ;
and

g.
'

( Iz) =

- sin cos -43 t Zoos sing
-

= 5 .

2053 Iz



"
INTEGRAL

''

OF THE X-COMPONENT OF

PARAMETRIC EQUATION (N4.20)

'

Consider the curve given parametrically by
' r Etfs , and

cxiy)
-

- fit)
-
- Cxctl , ylth with

suppose
that yet) 30

and x'4-170 V-te-r.SI .

Let a = xcr) and
b=XCs) .

( Note that a > b , since
x'Cti 30 f-teens] . )

'

Next , suppose
that we can eliminate t

to express
the curve explicitly by y=gcx)

V-xe[a ,b] .

Then yet)
= gcxct))

V-te-r.SI .

Subsequently , using
the Substitution Rule

,

we obtain

the following formulas :

① The areas of the region I given by

a Exfb
,

O Eyeglx) is

A =/!!! gcxldx =/! gcxcthxltldt =/!yCHxYHdt ;
② The vote of the solid obtained by

revolving I about the x-axis is

✓ =/!! Tight dx =/!! Tight' x' ltldt :
③ If a > 0 ,

the volume of the solid obtained

by revolving I about the y-axis
is

V =/!!2Txgcxldx= ft!! ztixctlycttxitttdt :

④ The length of the curve C with aexeb is

-

-

given by

L=¥!VHgkxTdx=fiJlts¥ x'Hdt

: . L =/.sn/x4tI2-y'Ct#dt ;
⑤ The sirna of the surface obtained by

revolving C about the x-axis is

-

-

A =/!!! zhglxwltg.ie#dx--/tt!2Tiylx7Vx4tfty'ltTdt ; and

⑥ When a > 0 , the swfiececrea of the surface

obtained by revolving E about the y-axis is

A =/!!! 2TlxVltgId× = It!! 2TIxctwxytf-y.it#dt.



POLAR COORDINATES
(ARTESIAN GRID/COORDINATES ( 174.26) SKETCHING POLAR CURVES ( NY-32)

' ÷ We can sketch curves in the R2 - plane
'

'

"
let P be a point in the IR

'

plane .

" described by polar coordinates

Then
,
we say the

"

Cartesian coordinates
' '

of

① explicitly ( ie in the form refco)) ;

P is the ordered pair
( x. y) ,

② implicitly lie in the form for,O) -
- o ) : and

where
Cr
,
g) = fit) :(htt . Oct))) .

①
"

×
" denotes the horizontal position of

③ parametrically ( ie in the form

p ; and
LIMAGON CD4-34)

②
"

y
' ' denotes the vertical position of P .

' ! A
''

limagon
"

is a polar curve of the

To plot
' ' Cartesian points

"

,
we use a

form Image soiree :

Y ^ r = at bws O cimacon of Pascal -

Cartesian grid '

mactuhr History of mathematics

• Play) or

r = at
bsinoµ

,

go, some a. gem .

POLAR GRID / COORDINATES (134.26)
CARDIOID ( 134.34)

'

Let P be a point in the IR
'

plane .
' !

A
' '

cardioid
' '

is a limagon of the form"

Then
,

we say
the

' '

polar coordinates
' '

of P

r = a tacos
O

is the ordered pair Cr, O) ; where

Image soiree :

the distance from or cimacon of Pascal -

①
' '

r
' '

( yo) represents -
r = a +

aging mactuhr history of mathematics

the origin ;
and

for some a C- Rt.

② O (EIR) represents the angle between the

P in the

positive x-axis to
ROSE CD4- 34)

counter -clockwise direction .

-
' "

'

A
"

rose
"

is a polar curve of the

'

similarly , to plot
' '

polar points
"

,
we use a

form
TIME :3. rose e'er blooming

-

The DO Loop

^ Y
r = a cog (no )

( Blogs - SAS )

polar grid .

r

✓
•
Pcr, O) or

¥"

go. .
! :S!:#

"

and next .
↳ some :

Explorations of Polar Equations
-

jwilson-we.uga.edu
- when n is odd .

the number
- r

v

' !
Note that for any r > o

,

of petals is equal to 1
are,%o,

3 the number
( - r, O )

= ( r, Tito ) . ( N 4.29 ) . when n is every ,

CARTESIAN AND POLAR of petals is equal to Zn .

CONVERSION BETWEEN
5-fcx) (⇒ rsino = fcrwso ) ( N4.35 )

COORDINATES (N4.27)

! Let the point
P be represented in both Cartesian s

. If a curve is described explicitly in Cartesian

then the same curve

1
coordinates ( x.y

) and polar
coordinates ( " O ) - coordinates by y=fH) '

polar
coordinates

can be described impHy in
-

Then the following must hold :

by
① x =

rcoso ;
orsino = fcrwso) .

② y
= rsino ;

flxcy) = O (⇒ fcrwso, rsino)
= O (N 4.35)

③ x' + y
'
= r ;

and

in Cartesian

④ tano = ¥ .
.
"
s similarly , if a curve is described implicitly -

-

'

for every
( x ,y
) 't 0,0) , there exists a unique

coordinates by fc×,yy=o, then the same curve can
be

Z O Cup to a multiple of

r=V×4yT and a unique described implicitly in polar coordinates by
-

-

21T) such that Cxcy) = Cr, O ).

fcrwso , rsino ) = O .

In particular,

• =

III. tis:L:
'

I:3: I ?: cx.gs
-
- exits, yetis c⇒ POLAR COORDINATES cN435)

' !
Lastly , if a curve is described parametrically in Cartesian

T, + tan
- '

( ¥) -121k for some KEI ,
×< °

we can ( sometimes
but

coordinates by ( x.g)
= excel, yet ) ) ,

- cos
-' ( + Kik for some KEI , 9<0 - (NY 28 )

manipulation
to express

the

net always) use algebraic
curve in polar form -

*

using the formulas
in NY- 27



Cr,O) = Crit) . Oct)) ⇒ ( x.g) = ( ret) cos Oct), rctlsinoct)) r: rco) ⇒ (r, O)
= (rct)

,
t) &

(NY- 36) (x.g) = crctlwsct),
rltlsinlt)) (N4.36)

'

: note that if a curve is given pwacaHy in polar
. :

similarly , if a curve is described explicitly in

coordinates by Cr
,
O ) = Creel

,
Oct))

, then it is given
polar coordinates by r=rcO) , then

parametrically in Cartesian coordinates by

① it is given parametrically in polar
coordinates by

(x. y)
= Crit) cos Oct) , rct ) sin Oct )) . -

(r, O)
= ( ret ) , t) ;

and

② it is given parametrically in Cartesian coordinates
-

by

(x. y)
= ( rct) coset ) , rctlsinct )) .

TRANSFORM POLAR INTO PARAMETRIC

CARTESIAN COORDINATES TO PERFORM

CALCULATIONS (Nlt-39)
AT O-- t (EY- 40) EXAMPLE 3 : FORMULA FOR LENGTH OF

EXAMPLE 1 : SLOPE OF r=rCO)

Arco) WITH a E OE B CE4.43)
'

'

To find a formula for the polar curve r=rco) at

' !
We can use a similar strategy to find a

the point where O=t , we can convert the curve

formula for the length of the polar curve r=rCO)

into its
' '

parametric Cartesian form
' ' ( used in NY - 36) .

with ye Osp .

First
,

write r=rCO) as

write the curve in its Cartesian parametric form :

( ×
,y )

= ( rct) coset ) , rcttsintt)) .
(×
,y,

= ( rct ) coset ) , rctlsinlt ))
,

Using the product rule
,

the slope at the point where

so that

O -- t is equal to ×yt) = r'(t ) coset ) - rltlsinct)

day
,

= {dgI¥L, =
rYHsincH-rtHw yet ) = r'

Ctlsinctl + rcttsinct ) .

r'Ctlcoslt) - rctlsinct )
.

It follows that

x'Ctl't y'Ctf = r' Al't RCH
'

;

EXAMPLE 2 : FIND CARTESIAN COORDINATES OF

thus

ALL HORIZONTAL & VERTICAL POINTS ON r= Itcost

( =/!vxyti.ly#dt=f!VrytftrctTdt(E4.4l)
- !

We can employ a similar method to find all the

horizontal and vertical points
on the cardioid

r= It cos O
-

First
, express

the curve r=ItwsO parametrically in

Cartesian coordinates :

(x. y)
= ( ( ltwslt ) ) cost) , ( ( it coset) ) since )) .

Then

x'(t ) = dat ( coset) + wilt)) = - sink) - 25in#coset )

= -sinct ) ( HZWSH)) .

Hence x'(t) so when sinctl -- O or coset ) = -I .

This occurs when t=o
,
IT and t -- I } respectively ,

plus integer multiples of 21T .

Similarly ,

y
' ( t) = datlsinctltsinctwstt)) = czwsctt - Dcwsct) -11) ,

and so
y
' ( t) = 0 when cos Lt) -- I or coset) = - I .

This occurs when t= III and t -- IIT respectively , plus

multiples of 21T .

Lastly , plug in the values of t into the parametric
Cartesian equation to get that

t =o =) ( x.y)
= ( 2,0)

t = III ⇒ ( x.y)
= C -4 , IIe

,
)
,

and since x' It) -- O & y.CH to
at these points , the curve

is vertical at these points .

At

t=±Iz ⇒ cxiy)
= (¥

,

'IT ) ,

and since y
'll-1=0 R x'A) to at these points ,

the curve

is horizontal at these points -

when t -- Tl
,

this is at ( x. g) =
( 0,0 ) . We cannot determine

whether it is vertical or horizontal yet ,
since x'4-1=0 -_y'htt .

Apply L'Hohpital 's rule to get

fishy YET, = fi;yc2wstH
- sinctlcltzcosctll

-
- tie. - tins.

= - finna
= 3 - O

= O
,

So that Cxoy ) = co , o) is a horizontal point-



AREA UNDER A POLAR CURVE ( N4.45)
Let the region

R be the region given in

polar coordinates by

geo sp , FCO) E
r £910) '

a
g.geol

as follows : 1
We can approximate the area of R

0=0
,

① choose a partition of [ 913 ]
-

.

*: :O:÷:i;
-

÷: ::c: " ." .. :c:
②

' '

Slice
"

R into thin wedges, with the teth
@ =p )

wedge given by
each
!! is "the sector of a circle

On, E O E Ok , f-CO ) f r E glo) - with angle Duo

③ Then
,
the area of the 6th wedge is

⇒ Dna = tzgcos
-

Dao - IHO)
-

Duo

= tzbuocgco)
'
- foot ) .

approximately

DUA I tzcgccul
'

- focus
' ) Duo .

④ The area of R is approximately the area

of these sums
,

so that

A E I
.

,DuA I ¥
,

{ (gloat - faut ) Duo .
'

The RHS is a Riemann sum ,
so that the

exact area of R is the limit of
these

Riemann sums :

A =/!!! tzcgco)' - foot ) do -

EXAMPLE 1 : AREA INSIDE r=ltwsO (E4.46)

-
"
. Using

the above formula , we can calculate the

area of the region
inside the cardioid r

-

-
ltwso -

A = J!!!
"

tzcitwso )
'

do = Jo
"

} + wso + tacos't
do

=/!
"

?
,
+ ↳got I, cos 20

do

= [ Iot since tf sin 20 ) !
"

=
31T

i . A z
-

EXAMPLE 2 : AREA OF INTERSECTION OF r=3wsO

AND r
-
- 2-WSO CE4-48)

' ! We can apply the formula to more complicated contexts

as well
,

such as finding the area of the intersection of

the circle r=3wsO and the limaqon r=2 -WSO
-

no
-

- Iz

pg, =
↳
'

zu -cos05 do

* = itzawsoid.
' i' 1/11

so
,
the total area is

A = 2 ( DH t FA )

= 2 (fo
""

'zcz-wsop dot ¥!'zc3wso5dO)
= [Ezo - 4sinottysinzo] + [azote, since]

: . A = - 353 .

4



Chapter 5:
Differential Equations

- !
An

"

ordinary ) differential equation
"

,
or

"

DE
"

, EXAMPLE 2 : DE W/ EXPONENTIAL FUNCTIONS (E5 -3)

is an equation which involves a function , say

y=yCx) , of a single variable x
, along with

Let y=er× , so that
y
'

: re
"

&
y
' '

= Men
,

so

some of its derivatives ( eg y' (x) , y'
'

Cx) etc ) . CD 5- t )
that

y
''

-13g't2y=o (⇒ Me" -13rem + 2er×= 0

ORDER (DS- t)
(⇒ cr2+3r + 2) e

"
so

'

s The
' '

order
"

of a DE is the highest of the
(⇒ ( rt,ycr+z) e

"
-
- o

orders of the derivatives which occur in

r= -z ( since e
"
>o HER) .

(=) re -I or

the equation .

Hence
,
we can take re

-I & rz= -2 .

eg the equation
''

y'
'

Cx) -12g'lxlykP = sink)
"

is a Now, let
y=
aer" t be 'k× = ae

't be
-2x

.

Then

second order DE -

y
'

= - ae
-×
- 2be-2×

,

SOLUTION(GENERAL SOLUTION ( 135.1 ) and

y
' '

= ae
"
t 4be-2×

.

'

A
' '

solution
"

to a
DE is a function

y=yc×) which makes the equation hold Hence

g. + zy
,
+ zy = (ae

-x
+ ↳be

-2x ) + 3C-ae
"
- 2652×1+265×-1 be-2×1=0 ,

for all x in some interval .

Showing y
-

- ae
-×
t be

-2x
is indeed a solution to the DE .

*
a DE can have many

solutions .

( so this is the general solution ) .

- The
"

general solution
" to a DE is an

y,o,
a+b and yep = - a -2b

,
it follows that

Then
,

since

expression which
' ' contains

' '

all the

yco) = I

I g.coho
⇒ Ia+b=

'
⇒ a=2

,
b= - l .

solutions for the said DE -

- a -25=0

. the general solution will usually involve
so
,
the regained particular solution to the IVP is y=2E× - e

-"
-

arbitrary constants ;

EXAMPLE 3 :

"

APPLIED
' '

DE (E5-4)
- the number of arbitrary constants is equal

to the order of the DE .

INITIAL CONDITIONS (135.1)

"
s

' '

Initial conditions
"

are one or more additional
Cef xct) be the height of the rock ( in meters ) after

conditions that we might require a
solution

t seconds .

to a DE to satisfy . we need to solve the IVP consisting of

INITIAL VALUE PROBLEM / IVP ( 135- l)
. the 2nd order DE x'

'

Ct) = - 10 ; and

x'(t) = -5 and xco)= 100 -

-
'

: An
''

initial value problem
"

,
or

"

IVP
"

. . the two initial conditions

is a DE paired together with an Then
,

observe that

x'
'

(t) =
- 10

initial condition / a set of initial

conditions . ⇒ J x'' a) at = f- todt
. often , the # of initial conditions =

⇒ x' (t ) = - lot t C
, ,

order of the DE

where GEIR is some constant . Then
,
since x'G) = -5

,
it follows

- and there is exactly one solution

that c
,
-_ -5

, so we have

EXAMPLE 1 : SOLUTION TO y'
'

y
' -1×2 -_ y

x' (t) = - lot
-5 .

OF THE FORM y=ax2tbxtC ( E5-2)
Hence

We can find a solution of the form f x.(f) dt = J - lot -Sdt

y
-_ axztbxtc to the DE y'

'

y
'

-1×2 = y .

⇒ xct ) = - 5th - St + Cz ,
at y=ax2tbxtc ⇒ y

'

--2a×+b ⇒ y
' '

= 2A .

where Cz is another constant . Then
,

since xco) -- 100 , we have

So
y
' '

y
' -1×2 -- y = (2akzaxtbi-x-axtbx-c.cz -_ 100 ; hence ,

the solution to the IVP is xct) = -St
-St -1100 .

⇒ 45×-1 Zab + x2= aft bxtc

find out when the rock lands
,

we solve xct) -- O :

Equating coefficients , we get a ' '
,
492=4 Zab "'

Then
,

to

so that a=l
,

b=4 & c=8 .

O =
- St
'
- St -1100

Hence the only solution is
y
-

- +2+4×-18 . TB

⇒ O = - Sct -15kt - 4 ) ,

so (since 1- 301 the rock lands when t -- 4 .

Then
, since x'(4) = -45, the rock lands at a speed of 45ms

"

.



DIRECTION FIELDS

SOLUTION CURVE CDS-5 ) EULER'S METHOD (NS- 8 )
-

'

: A
' '

solution curve
' ' to a DE is the

"

Euler's method
"

is a way to approximate
graph of a solution y=ycx) of the said

the solution to the IVP y' Cx) = Fcx, ycx)) with
DE .

yea) = b.
SLOPE/DIRECTION FIELD ( NS-G)

- The
''

slope field
"

,
or the

' '

direction field
"

.

'

Methodology :
"

of a DE of the form ① Pick a stye Dx ( which is small ) .

y
'

( x) = F- ( x, ycx)) ② Let ×o=a and yo=b, and for each n30, let

is a sketch of the solution curves to
xn+,

= Xn t Dx ; and

the said DE - Yn+,
= yn t Fcxn, yn )Dx .

'

we can sketch a solution curve to a ③ The solution curve y=fCx) is then approximated for

DE of the above form as follows : values x > a by the piecewise linear curve whose

① Choose many points ( x. y) , and for each graph has vertices at the points (xn ,yn) .

point compute Fcxiy ) . ④ Note that 9^+1-92
( ie the slope of the line

Xnt, - Xn
a solution to the DE ,

② suppose y=yC×) is

segment joining cxmyn ) and Cxnt, ,yn+, ) is equal to

so that y' Cx) :
F- ( x. y) , which is the slope

the slope of the direction field at the point cxn.TN) -

of the solution curve at the point Cay) .
⑤ Lastly , if we wish to approximate solutions with values

③ Then
,
at each point Cxiy) , draw a short

XEA
,

we can construct points with nco by
line segment at the point Cay) with slope

letting

F- (x. y) - Xue, = Xn - DX

④ If we choose enough points Cxiy) , it should
yn, = yn - Flxniyn ) Dx .

be possible to visualise the solution curves . since

EXAMPLE : y
'
= × - YZ (E5-9)

they follow the direction of the short line segments.

"

"

Then
,

to sketch the direction field of the DE

y' Cx) = Fcxiy ) :
The isocline y

'
-_ m is the sideways parabola mix - y2,

① we first draw several isocline , which are the

or x = y2tm .

We draw the isocline (yellow) , the

curves F- (x. y
) -- M

,
where MEIR : then

'

pf ( green)
and the solution curve ( blue ) below :

② we draw many
short line segments of slope m

Next , let xo=o and yo:O
. For h > 0 ,

along each isocline Fcxiy) = m - set xuei-xutbxdyuu-yutflxu.ua/Dx,
where f- ( x. y

) = X - y
'
'

'

Finally, to sketch the graph of the solution to the
Then

,
observe

IVP y' ( x ) = Flag) with ycxo)
-

- Yo
:

h xu Yu FLxu.su) -- Xu - ya
'

① we sketch the direction for the DE o
o o o

'
O -5 O O -5

2

y
'

( x ) = F-(x , y) ; then
,

I - O 0.25 0.9375
3 I - 5

0.71875

curve which passes through
4 2.0

c. zioyygz
0.98339

② we draw the solution
s

2. s
0.534812

g. I - 477855
0.315942 ,

the point ( Xoiyo ) .
I - O

l - 635827

EXAMPLE : SKETCHING THE DF FOR
y'=×

-

y (f-5.7)
so that fo) - yo - i. 6 .

Suppose we wanted to sketch the direction field

for the DE y
'
:X -

y, and the solution curves

through each of the points (xo,yo)
: co

,
-2 )

,
co
,
-1 )

,

( 0,0) and ( 0,1 ) .

The isocline are the lines × -y -
- m
,

so to sketch the

DF
, we must lightly draw the lines x -y .

-

m for several

values of m . (shown in yellow) .

Then
, along each isocline

,
we draw many short line segments

of slope M
,

where m is the value of the
isocline

( x - y
-
- m) passing through the point - (shown in grey ) .

Lastly , we can stretch the solution curves ( shown in blue ) .



SEPARABLE FIRST ORDER EQUATIONS ( 175.10)
"
-

A
"

separable first order DE
"

is any SOLVING SEPARABLE 1ST ORDER DES (NS- Il)
DE that can be written in the form

.

note y=yc×, is a solution to the separable DE

f-Cylx )) y' ( x)
= 94) ,

fly, y
'
= glx) when

where fcx) , gcx )
are continuous functions .

✓ fcycx)) y' Cx)dx
= Jgcx)dx,

or

✓ fcycx) ) y' (x ) dx = ✓ fly) dy .

'

So to solve the DE
,

we rewrite it as fly) dy -- gcxldx

and then integrate both sides .

LINEAR FIRST ORDER EQUATIONS ( 135.14)
A

' '

linear first order DE
' '

is a DE which can

be written in the form

g.
' Cx ) + pcxlycx)

= qcx)

for some continuous functions pcx)
and qcx ) .

SOLVING LINEAR 1ST ORDER EQUATIONS (NS- 15 )
-

We can solve the linear DE y
'

-ipy=q
as

follows :

① Find an

"

integrating factor
"

R -

- Xcx) such

that a
'
= Xp ;

this would imply

(dy )
'

= n'y + ay
'

= dy't Rpg .

② Then y
'
+ py

= q
reduces to

try
'

+ Rpg = RE

⇒ ( Ry)
'

= RE

Ry = Jirqdx
i

y
-

- atfirqdx .

③ To find TL
,

we need to solve the DE

n' = Rp ,

which results in the solution

D= eufpcxldx
.

In general , the solution to the DE

y
'
Cx ) t plxlylx) t qcx)

=o

"s

yc× , = e÷×d×-fed""" qcxidx ,
where ,zc×y= ESP"'d× is the integrating factor ' CTS- 16 )



APPLICATIONS
* mainly just

"

plug and chug
"

formulas .

ORTHOGONAL TRAJECTORY
(135.21) MIXING PROBLEM (NS-29)

's
for a given family of curves

,
an

"

orthogonal
"
.

Imagine we have some solution with a given

trajectory
"

is a curve
that intersects each concentration c

, of some solute
,
which enters

curve orthogonally : ie at a right-angle
to

a tank at a fixed rate r
,
.

the curve . The mixture is stirred ( to ensure equi distribution

EXAMPLE : ORTHOGONAL TRAJECTORY OF
of the substance)

,
and drained at another rate

x = Kyle (ES-22) rz .

Let Vct ) denote the volume of the tank

We can find the orthogonal trajectories of

at time t . Then
the family of parabolas x=ky2 via the

✓ Ct) = Vco) t Cr, - rz) (t) ; and

following :

Differentiating x=hy
' Wrt x

,

we get 1=2699
'

' ✓
'

(t ) = r
,
- rz .

so the parabola x=hy2 has slope y
'
-_ zuty at

pwf. This follows from solving the DE

each point -
y
'
( t ) = rig - rzcz ;

since h=fz , it follows y
'

-_z¥,y= LI .
where cz= I

Then
,
as the orthogonal trajectories are perpendicular to ✓

.

the parabolas, necessarily their slope is
y
'
=
-

¥ .

So to find the orthogonal trajectories, we solve the DE
TORICELLI'S LAW (NS-31)

y
'

= - I
! "

Torricelli 's Law
"

states when a liquid
drains

y
-

through a hole in a tank of liquid ,
This is a separable

DE ; so

it flows through the hole at a speed
y dy = - 2x DX

which is proportional to the square
root of

⇒ fydy = J- 2x DX
the depth of the water above the hole .

YI = - x

'

t C

For a non - viscous liquid , the speed is

⇒ x't YI = c ,
implying the orthogonal trajectories are the ellipses v E VzgJ ,

x' + Ia -

- c
,

where a- Rt.
where

g is the gravitational constant
,
and y

EXPONENTIAL GROWTH/DECAY (135.23)
is the depth of the liquid .

'

A quantity y
-
- yet) is said to

"

growldecay exponentially
"

if it satisfies the DE g'Ctt -_ kyltt for some KEIR .

This gives
the solution

let

y
-

- Ce
,

and note that c - yeol , so that

'

Then
,

Y
't ) = yco) eat .

① when yco) > O & K >0
,

we say y guys

exponentially ; and

③ when yco) > 0 & kco
,

we say y decay

exponentially .
NEWTON'S LAW OF COOLING)WARMING

(NS-26 )
- ÷

"

Newton's Law of Cooling (warming
"

states

the rate of cooling / warming of an object
is proportional to the temperature difference

between the object and its surroundings :

ie

1-
'

( t ) = KC K - Ttt ))

where Tct) is the temperature of the object

at time t
,
and K is the constant temperature

of the surroundings -



Chapter 6:
Sequences and Series

*
this relies heavily on knowledge from
MATH 147 .
-

LIMIT SUPRENUM & INFEMVM CONVERGENCE TESTS

(DG. 13) INTEGRAL TEST (TG - 29)
"
'

Let f-Cx) be positive and decreasing Vx> h
, and

!
Let can)n>neck be a sequence .

I let an = f-Cn) Vn> k , NEX .

Then
, the

' ' limit supremum
"

of Canta>he is defined to be
- Then 2-an converges ifandonlyif If fcx)dx converges,

the extended real number
and this case

, for any e > k we have

line, soup cant
= diff sup ( Ian : ↳ n } )

,

and the
' '

limit infimum
"

of Cann> h is defined to be ¥
,

"" d× t

+ in
E J! fcxsdx .

- m

Puff - Fix e > k, and let Tm ' Zan . Note that since fcx)
the extended real number

net,

is decreasing , it is integrable on any
closed interval -

linnean f- Can) = him int (Eau : k > n } ) -

Also for each n > e necessarily fcnsefcx) V-xetn-t.nl
,

* so that
the extended real numbers = R U E - n , a } .

Then
,

note that fun
. ,

fcxldx 7 J!
,

andx = an .

① Can ) is bounded above ifyif linmfup an L Ni It follows that

② Can ) is bounded below ifaf liminf an > -* ; and Tm =

n
E ¥e+

,
)!

,

fcxldx =femfcxidxffffcxldx.mx
③ ng an = b if and only if link, pan = b = linminfan . C -16.14) since fcn, = an > O

,
the sequence

( Tm) is increasing '

SERIES (DG- 15) If futfcxldx converges. then Ctn) is bounded above by

/! fcxldx, so ( by MCT ) it converges
with mlismatmf %fCxldx -

-

For a sequence
Can)n> k , we define the

' '

series
"

Iman to be equal to the sequence
( Selene , A similar argument can be used to prove Tmz Je?

,
an dx .

where p -SERIES (EG-30)

Se = £ an = ant . . . + ae ,
'

"
s we can show n§, # converges ifaf p >

I .

n=h

called the eth "partial sum
"

of the series Ishan - PIF ' If pco, then nlismantp -- N , and if p=o , then nlisman-p.si ;
'

Then
,

we define the
"

sum
"

of the series to be so
,
in either case

, by the Divergence Test -2¥ diverges .
the sum

Then
' suppose p > O - let an - tap An > I , nez, and

• let fcx) -- Tp Vx> I .
S = Ean = an + ant , +

. . .
= Ling Se ,

" h Note that fcx) is positive and decreasing that
,
and

and if S exists and finite we say
the series

an -_ fcn) Vn> I .

Converges . Since we know fifcxldx converges if and only if P > "

FIRST FINITELY MANY TERMS DO NOT AFFECT it follows by the integral test that Zan converges if
and

CONVERGENCE (TG - 19) only if psi , as needed . Be

Let Cann>hair be a sequence . APPROXIMATE
n}, ztnz ( EG-31)

the series nan converges ifandyThen for any m > k, '
"
' we can approximate the sum S = ÷ so that the

'I §
,
man converges ,

and in this case

error is at most To .

⇐uan = Cant - . . + am-i ) + ⇐man - let an -_ ztnz and fcx) -- ztxz , so we can apply the Integral Test
.

If we choose to approximate S by the eth partial sum Se ,

Iwf . Simple .
Be

the error is

'

Note that since the first finitely many
terms of a

series does net affect its convergence ,
we may opt

'E = S - Se = II.an E f!#dx =/ -2¥]I = Ie
,

to just write the sum S= Tynan as simply
so to ensure EE Io we can choose e > So .

Since it would be tedious to add up the first 50 terms of the

Ean if we just want to determine whether S
series

, we instead take the upper
& lower bounds of S -Se using

converges
- ( Nb - 20 ) the Integral Test :

ERROR (NG -22) Jef
,
fcxldx E S - Se E [ fcxidx

"
- Let juan be convergent, and so by Nb-20 for any

e > k
, Ian is also convergent

-
'

'

- 2¥, E S - Se E Te
NZett

N

the sum S -- Zan by the
Then

, if we approximate n=u
⇒ Set Lee, ) E S E Sethe .

eth partial sum Se = Ian ,

the
"

error

"

in our

If we approximate s using the midpoint of the upper
and lower

approximation is

n=h

•

bounds
, ie s - Icse -1¥

,,t Set zte )
= Set Iczcetntzte) ,

is - Sel = I E ant . we get Es
met ,

{ ( Te - Letts ) = 4¥, .
So
,

to get E too
,
we want 4¥, too , so we can take e=5 .

Then we estimate

S2 Sgt I + iz) = 59297200 -

=



LIMIT COMPARISON TEST (TG -36) ABSOLUTE CONVERGENCE ( DG-47)

!
Let an > O

and bn > o Vn>k , and suppose
! we say a series uan

"

converges absolutely
"

if

that nhjm If = r . I.ulanl converges .

Then : CONDITIONAL CONVERGENCE ( DG-47)
① If r= N and Ean converges , Ibn also converges ;

② If r=0 and 2-bn converges , Ean also converges ;
and

"
'

we say a series Iman
' '

converges conditionally
' '

if

③ If ocrea
,

then Ean converges ifyif Ebn converges . Euan converges but ¥ulanl diverges .

Puff. If Liff II = a , then for large n necessarily ÷ > I
,
so that an > bn , eg EY converges conditionally for OcpEl .

and the proof follows from comparison . ( follows from EG -30 and TG -44 ) . ( EG - 48 )

A similar proof exists for the case if his'T = O
- ABSOLUTE CONVERGENCE IMPLIES

Then
, suppose fishy abt = r with ocrea .

choose m so that when CONVERGENCE ( TG- 49)
" " m

, we have I Fn - rl c E ;
!
Note that if Elam converges , necessarily Jan

this
implies E c agn , Sir

,

so that Oc Ibn Ean E Ez bn . converges as well .

Puff. This follows from the fact that

If Zan
converges, then Erzbn converges by comparison , and hence

of an + lanl E 21am for all n
.

Ibn converges by linearity . and by linearity and comparison
- B

If Ebn converges , then EE bn converges by linearity , and hence

MULTIPLICATION OF SERIES ( TG -51 )
Zan converges by comparison - Doh

"
"

suppose ¥01 ant converges and n§olbnl converges .
RATIO TEST ( TG - 38 )
!
Let an > O th> k , and suppose nlismnanatnt = r .

Let cn=§oaubn-u .

Then Cn converges,
and

Then
. Ein = ( Ioan) ( Isbn ) .

① If rel , Ian necessarily converges ;
and

② If r > I
,
Ian = a . Puff - Let Ae -_ Ioan , Be -- ⇐obn , Ce -_¥ocn ,

pgwf . This follows from the theorems of Tb -19
. A =

uan , B = bn
,
K =

otani and Ee -- B -Be .

using geometric series , and comparison -

Then
*
note that if dismantle = I

, Zan could converge of Ce = aobo t Caob , talbot + Caobztqbitazbo) t - . .

diverge -

t Caobet . . . t aebo )

eg If an -
- th

, at'jm% =L & Ean diverges :
and = ao Be t a

, Be-it . . . + aeBo

if an = IT , Liya anata = , & Ean converges
.

= aoCB- Ee) + a
,
CB - Ee -il t - - i t aeCB - Eo )

ROOT TEST ( TG-41)
= AEB - CaoEet a

, Ee-it s' ' + aeEo ) .

!
Let an 30 In> k

,
and let r= linmsaup Want .

It follows that

Then I AB - Cel E ICA - A- e) BI t lao Ee t . . . + aeEo I

① If rel , then Ian converges :
and

by the Triangle Inequality .
② If r > I , then Ean -

- N ( since Lingnan -- o ) . Then
,
let E > o . Choose m so that j >m implies

ALTERNATING SERIES (DG-43) Ej a
E-
3K -

"
:
we say a sequence Can )n> h is

"

alternating
"

if Let E = max II I
,

. . .

.
Eml}

.

Choose L > m so that

either an - C -151am or an =L- 1)
""
lanl Vn > K .

l

when e > L
,
we have E tant c ÷ and the - ALIBI < § .

nie- m

ALTERNATING SERIES TEST ( TG -44) Then for e > L
,

!
Let Canta> u be an alternating series . Ice - ABI c l CA - Ae ) Bl + laoEet . - - tae-me , Em# I

suppose the sequence
( lanl) is decreasing with

+ tae-m Em t - - - t aeEol

him
.
lani -- o . ' 5- + C ant ) # + (II.miani )E

Then Ishan converges , and in this case we

< Ez t KEK t EJEEto

have I -2 ant E lakl .

n -- h L E
,

Puff - we just give the proof in the case that 6=0

and an
-

- c -151am .

thus showing that cliff Ce = C = AB
, as needed . Daa

Suppose ( lanl) is decreasing and lanl → O .

Let Se=¥oan . Then
,

note that since ( lanl )

is decreasing, necessarily

Sze - Sze - i = hazel - laze- it E O
,

so that the sequence ( Issel ) is decreasing .

Moreover
,

Sze = laol - la , I t 1921 - last t ' ' ' + laze-21 - laze -it + lazel

= ( ( aol - tail ) t ( lazl - last ) t - - - t ( laze-21 - laze- it ) t lazel

3 laol - tail ,

and so Sze is bounded below by laol - la , I .

It follows ( Sze ) converges by MCT-

similarly , (Sze. , ) is increasing and bounded above by laol ,

so it also converges by MCT
,

and fishy Sze . , Elad -

Finally . since lanl -30, taking limits on both sides of the equality

lazel = Sze - Sze - i gives us that O = eliffsze-elijna.su. . . so

we have diff Sze = elim Sze - I -

It follows that ( Se ) converges
with eliffse-eliyfsze-elifh.su, E lad .

Da



FUBINI'S THEOREM FOR SERIES ( TG -53)
' !

Let an.me R V-n.ms, O , and suppose
that

olan,ml converges for each n> o and that

¥o( I.olan.nl ) converges
.

Then necessarily
① Ioan,m converges

th > o ;

② nFo( Emioamm) converges ;

③ ⇐ an,m converges Hm> o ;

④ ¥o4 an,m) converges ;
and

⑤ Eoc a.m) -

- III. and .

Pewof . First, we claim Ian
,
ml converges thru , I,o( I.olan,ml ) finally, let E > 0 . Since I,o(II.olan,ml) and m§o(Enolanml)

converges , and IEC olan,m1 )
= I.( I.olan.int ) . both converge , we can choose k and l so that

For all mm
,

we have Ian,ml E Elan.nl , and since IIe .CI?olan.ml ) < IT and In! #olan,ml ) < IT .

U --o

¥!?Io tan.nl) converges , we know ⇐olan,ml converges by It follows that

the comparison test . Eo( Ioan,m ) = Io oan.mtm.EU#an.m )
Let u > o and E > 0 be arbitrary . Since each sum olan,ml

converges , we can choose L so that when l > L
, we have = II ( Ioan, m) + IE (Eman, m)

n.EE#lan.mlcI+TV-mc- 0,1 . . . . . K .

Then for e > L , we have
Hence

=¥o(Ioan'm ) + IIe.fm?oan.m)tE.omEi...an.m)
.

E.ocI.ian.mh-m.onE.ian.mi.in?...ian.mi ) '

E.im?oan.ml-E.ocE..an.mllenE.nE..an.mH+lE..dE.a.an.mHmEonE
.la.nl + ⇒ '

E.li?.an.ml+InnEa...an.m10--E.onEian.ml) + e
' II.tn?olan.mD-nEomE..lan.mD=n.EcE.oiam.nD+e' II.im?.lan.mD-mE.nE.oian.mD

← (I. 1am.nl ) + e

' Eee .li?olan.mD-mEu.n..E1an.ml )
< Ey t E

,
= Ez .i E.ocI.olan.nl) e Io( Eiolam.nl ) t e .

Since e was arbitrary, we have ÷! olan.mpen.ECEiyam.nl ) .
Similar'T III.III.oamm ) - m-%CE.oan.my c Ez

,
and so

Then
, as the

sequence of partial sums (⇐( Idan.mn) is increasing

I o( Ioan'm ) - Ein an
,m) ) c E

.

Since e > o was arbitrary , it follows thatand bounded above by ¥o( I.olam.nl)
, by MCT we have that

⇐o(Emioan,m ) = ⇐o( Egan,m ) , as required - TBI.oEE.olan.mil converges and If Ian.nl ) E ¥! olan.nl ) .

By symmetry , we get the opposite inequality , thus proving
the

claim .

#

Subsequently , for all n > 0
, since ¥01 an,m1 converges, we know that

⇐anim converges (since absolute
convergence implies convergence ) and

that IE.oan.ru/EI.olan.ml .
Since I,o( II.olan,m1 ) converges, necessarily ¥01 Ioan,m/ converges by

the comparison Test , so that n§o(II. an,m ) also converges
( again ,

since absolute convergence implies convergence ) .

Similarly , ¥0 an,m converges for all m > 0
,

and I,o(§oan,m)
converges

.

#



Chapter 7:
Sequences and Series of 
Functions
POINTWISE CONVERGENCE (DF- t)

-

Let AER , f : A- → R
and define a fan : A -7112 for EXAMPLE l : fncx) = x

"
(EF-3)

each n > p ,
where PEZ .

Then
,

we say
the sequence of functions (fnlnxp

" "

converges Let fncx, = xn . Then observe that

pointwise
"

to f on A when nhjmfncx) = fix) . lnijmfncxi = I "
" '

I
, X = I .

In other words
, Cfnln>p converges pointwise to f on A EXAMPLE 2 : fncx) = Intan

-'
Cnx) (EF-4)

ifayE for any
e > 0 and xea

,
there exists a m>p

such that

I fncx) - f-Cx) I c E In>m
. Let fncx) : Intan

- '
Cnx)

.

Then lnismafnlx) = O
,

and fix) -_¥×z
,

In this case
,

we write
"

fn→f pointwise on A
"

.
so

anti;yfny×, = 49×1=0I
,
X = O .

CAUCHY DEFINITION FOR POINTWISE CONVERGENCE
EXAMPLE 3 CE't-5)

( 137.2)
'

Equivalently , we can also deduce fn→f pointwise on A

ifandonlyif for any e >O
,

there exists a m7P Let Cann" ,
= ( F . 'T. E. I. 3. F. T . }, }

,

Ei
.
. . .
.
¥. . .. ) .

such that For xe[0,13
,

let fncx) = 40 ,
* 449' ' '- can}

Ii XE Ia, , . . . , an} -

Ifhcx) - fecx) ) C E VXEA
,

the,l > m clearly each fn is integrable since it is only discontinuous

- O, XEIQ

by the Cauchy criterion for convergence
.

at finitely many points , but nhjmfncx) -- g , ,×e①. .

EXAMPLE 4 CEFG)

(et f, Cx) = 4484
-E) ( t -x) , { Exe ,

°
,

otherwise
.

For n > l
,
let fnlx)=nf, Cnx) .

Then each fn is continuous with Jo
"

fnlx)dx= I
,

and

nhjmfncx) = O -Vxe[0,13 .



UNIFORM CONVERGENCE CD7-7)
' "

. Let AER, f : A -SIR , and for each map , define a fn : A -5112 - UNIFORM CONVERGENCE & INTEGRATION (-17.10)
\ " "

s
Let fn → f uniformly on Taib] .

Then , we say the sequence of functions Cfn)n>p converges
Then

, if each fn is integrable , f is necessarily also integrable .
uniformly

' '

to f on A ifandonlyif for any e > 0 ,
-

-

In this case
, if we denote gncx) =fa×fnCt)dt and gCxI=fa×fcHdt ,

there exists a m > p such that for all XEA
,

we have

then necessarily gn -7g uniformly on [a. b ] .
that

n 3M ⇒ Ifncx) - full C E
.

In particular, we have that

*
note the difference

in the wording between pointwise & absolute nlimfabfncxydx = fab nlismafncx) dx .
convergence ! Kof . Let each fn be integrable on Ea

,
b ]
.

'

In this case
,

we write
''

fn→f uniformly on A
"

.

Let e> o . choose N so n >N ⇒ lfncx) - fails y÷a) Kataeb] .

Fix n3N . Choose a partition
X of [a,b] so that

' !
Like pointwise convergence ,

a similar
' '

Cauchy definition
' '

exists for
3 Ucfn, X ) - Lcfn , X) C Ez .
absolute convergence

.
( TFF)

Note that since Ifncx) - fcxllc 4÷a) , we have Milf) < Milfoil + y÷a,
UNIFORM CONVERGENCE , LIMITS & CONTINUITY

and miff) > milfoil tied 1,2
,
. .
.

,
n }
,

and so

(1-7.9)
Ucf, x) - Lcf, X)

=

i

(Milf) - micftlbix
"
÷ Let fn → f uniformly on A , and let

× be a limit point of A -

C ¥
,

(Milf) - micfn ) + ÷a, ) Dix

suppose yhjm, fancy ) exists for each NER!
= vcfn , X) - Lcfn . X) + Ez

Then necessarily C Ez + I2
ytismnhjmfncy) = him. 'yiFxfn9' . = e .

In particular, if each fn is continuous in A .
It follows that f is integrable on Ea,b] . Da

then so is f .
Next

, define gncx) =/!fnctldt and gcx) = fctldt . Let e > 0 .

Choose N so that n>N ⇒ Ifnct ) - f-CHIC ÷a, FTEI .Pewof . Let bn -- yhjmfncy) . We need to show nhjhfbn = ylismfcy) .
let n>N

,
and XE -6,67 .

Then observe that
we claim first that Cbn )n> , converges .

Puff . Let e > o . Choose m so that lgncxl - gcx) ) = If!fnCHdt - f! fcttdtl
ye > m ⇒ lfucy) - fecy) ) c § Hy EA '

x
=

lfalfnct) - fctlldtl
Fix h,l7m,

and choose a yea so that

Italy) - but c § and Ifely) - bet CF .

E f
't

Ifnct) - fctlldt (by estimation)
a

Then

Ibu- bet E Ibu
- fulylltlfucy) -felylltlfecy) -bet

E J!2¥ dt
( § + § t § = E- Cx-a)

2lb -a)

= E , E ÷
and so by the Cauchy criterion for sequences, Cbn ) must

< E
,

converge
. # So that

ga → g uniformly on [a. b ] , as needed .

So
,
let b. = nliyybn .

Let E > 0 . Choose m so that when

In particular, since nlinggncb) = gcb) , it follows
that

mm
, we have Ifncy ) - fly)lc§ HYEA , and Ibn - b) < § .

Fix n> m . Since lying, fncy) = bn , we can choose a
8 > ° nksmgfabfncxtdx-fabnligzfncxldx.DE

so that o c ly -xtc s ⇒ Italy) - bnl < § .

Then
,

when Oc ly-xlcs, we have

Iffy) - bl E Iffy) - fancy)l t lfncy) - bnl + Ibn - b )

( Est Est 's
"

lfcyl -H c E
,

proving that glim, fly) = b
,

and so yhjmfcy)
-
- nlisnfbn , as

needed . DG

In particular, if XEA and each fu is continuous at ×
,

then we have

glim, fly) = fish Liffey) = nhjmolyismxfncy) = nhjmfncx) -- fix) ,

so f is continuous at x by definition . Da



UNIFORM CONVERGENCE & DIFFERENTIATION

(TF-Il)
"
"
Let Cfn) be a sequence of functions on [a. b ] .

Suppose each foe is differentiable on [a. b), and that

Cfn
'

) converges uniformly on [a. b] .

Suppose further that Cfncc)) converges for some a- Taib ] .

Then necessarily
① Cfn) converges uniformly on

Carb] I

② nhjmafncx) is differentiable :
and

③ IT
, nhjmfncx)

= diff daxfncx) .

Pweof . let e> 0 . Choose N so that when n,m3N ,

we have Ifict) - fm
'

CHIC E-
2.Cb-a) htt C- [a, b] ,

and

Ifncc) - f-mulls Ez .

Fix m,n3N ,

and xEEa,b] . Then , by the Mean Value Theorem

applied to the function fncx) - fmcx) , we can choose t

between c and × so that

Cfncx) - fmcx) - fncc) t fmcc ))
= ( f:(t) - fm' Ct)) (x - c ) .

Hence

Ifncx) - fmcx) ) E lfncx) - fmlx) - fnccltfmccll + Ifncc) - final

= If:(t) - fniltlllx-cl t lfncc) - fmkll

< ÷a, Cb- a) + Ez
= E

,

showing Cfn ) converges uniformly on Carb] - #

At f-CX) = lnimfncx) . Fix XEEA,b]
,

and note that

f-
'

Cx) = nhjmficx) c⇒ yf9fI = him fi;n×fncys-fy
-x

⇒ jia.hism.tn
"

-
- tingling!" .

So we just need to show Cgn ) converges uniformly on [a. b) LEX} ,

where
gacy) = fnY)-f) since the rest follows from

Tt-9 -

y
-x I

let e >O . Choose N so
that n

,
m > N ⇒ Ifn

-

Ct) - fm'Ct) ) CE V-tefa.be
.

let him > N ,

and fix ye [
a. b) 14×3 .

Then
, by the mean Value Theorem

,
we can choose t between x

and y
so that

Cfncy) - fancy)
- fncx) tfmcx))

= (fitt) - fm'Ct)) Cy - x) .

Then

lgncy) - gmcy ) /
= /

th'T) - truly) - fncxltfmcx
)

# / = ( fifth - fm
' CHI c e

,

showing Cgn ) converges uniformly on [a. b) 14×3
,

as required . ⑤



SERIES OF FUNCTIONS (137.12)
'

"
: let Cfnln>p

be a sequence of functions on AER . UNIFORM CONVERGENCE & DIFFERENTIATION
"

Then
,

we define the
' '

series of functions
' '

n,§pfnCx) (1-7.16)

is defined to be the sequence
-

"
.

Let Cfn ) be a sequence of functions , so that each

e

(Secx) ) = ( E fncx))
.

fncx) is differentiable on
Each] '

" "
suppose further that n§pficx) converges uniformly on Eaib]

,

"

Seh)
"

is called the
"

eth partial sum

"

of the series .

-
-

CONVERGENCE OF SERIES OF FUNCTIONS (DF- 12) and ¥pfnCc) converges for some ceca,b] .

on [a,b]
,

and

we say the series n§pfnCx)
"

converges pointwise
"

on
AER Then necessarily n§pfnCx) converges uniformly

when the sequence (Secx)) converges pointwise on A ' da
, pfncx) = ¥pI×fnCx) .

and
"

converges uniformly
"

on AER when Cselx)) converges
PIF' This follows from the analogous theorem for sequences

uniformly on A .

of functions . 193

In this case
,

the
"

sum

"

of the series of functions is

- WEIERSTRASS M -TEST (TF- 17)
defined to be the function "

"

suppose that Ifncxll E Mn HEA for each fn ,

f-(x) = pfncx)
= elif Sek) - where n>p . such that §, Mn converges

-

CAUCHY CONVERGENCE FOR A SERIES OF FUNCTIONS Then necessarily n§pfnCx) converges uniformly one
A '

(TF - 13) Pneof . Let E > o . choose N so that l > k >
N ⇒ ¥u+iMn< E -

"
: Let Cfn) be a sequence of functions on AER .

Fix e > h > N and ×eA . Then observe that

Then
,

the series ¥pfnCx) converges uniformly on A

IIE
, ,fncx

) ) s fncxll E inn C E
,

ifandonlyif for every e > o,
there exists N >P

which by -17.13
,

is sufficient to show n§pfncx) converges
such that for all XEA and k,e3p,

we have

uniformly on A . Dae

e > k > N ⇒ I ⑦ fncx) ) c E .

n=htl

PIF' This follows from the analogous theorem for sequences

of functions . 193

UNIFORM CONVERGENCE, LIMITS & CONTINUITY
FOR SERIES C-17-14)
!
Let Cfn ) be a sequence of functions on AER -

Suppose n§pfnCx) converges uniformly on A
,
and let x

be a limit point of A '

suppose further that ykjnffncy) exists for all n >p .

Then necessarily fish, ¥pfnCy) = Epting, fancy) .
In particular, if each fncx) is continuous on A

,

or

then so is Zfncx).
n=p

PIF' This follows from the analogous theorem for sequences

of functions . 193

UNIFORM CONVERGENCE & INTEGRATION FOR

SERIES C -17.15 )
!
Let Cfn) be a sequence of functions on [a. b] , such

that ¥, fncx) converges uniformly on [a,b] .

Suppose each fncx) is integrable on Carb] .

Then necessarily so is pfnCx) .
In this case

, if we define gncx) = Jatfnctldt and

94) =/! fnctldt , then ¥pgncx) converges uniformly

to gcx) on
A -

In particular, we have

fab ⇐pfncxldx = ¥p fabfncx) dx .
PIF' This follows from the analogous theorem for sequences

of functions . 193



POWER SERIES (137-19)
-

"
'

A
"

power series eata
"

is a series CONTINUITY OF POWER SERIES (TF- 26)
of the form "

:

suppose the power
series Eancx-at converges in an

n

-2 an (x - a) interval I -
NYO

Then the sum fcx) = an Cx - a)
"

is continuous in I .

for some ant IR .

Pweof . This follows from uniform convergence of Eancx-a)
"

is

ABEL'S FORMULA (17.21)
closed subintervals of I .

'
"
- Let Ian} and Ibn} be sequences .

ADDITION & SUBTRACTION OF POWER SERIES
Then necessarily

tmanbnt (n'Iman)cbp+, - bp) = (Iman) be . (1-7.27)
'

"
: suppose Eancx-at and Ebnlx-at both converge on I .

"Iof'

,

( Iman) (bpti - bp ) = amlbmt, - bm)
Then zcan+bnyc×-ay and Elan - bn) Cx-at both converge

in

+ (amtamt,)Cbm+z- bmti)
I
,
and for all XEI, we have

+ (amtamt ,
+ am+2) ( bm+z - bmtz)

+ - - - Ioana,-at ± II.bncx-ai-IIcantbnkx.at.
+ (am -1 am# t

- i - tae- 1) ( be - be - i )

Puff. This follows from Linearity .
= - ambm - am+,bm+, - . . . - al - i be - I

MULTIPLICATION OF POWER SERIES C-17.28)
+ ( am tame, t - . . + ae -1) be - aebetaebe

-
: ( Iman)cbp+, - bp ) = ( Iman) be - ¥manbn . Dm

'

s
. suppose Eancx-ay and Ebncx-at both converge in an open

INTERVAL & RADIUS OF CONVERGENCE (-17.23) interval I
,

and suppose
AEI .

Let joanCx -at be a power series
,

and let
Let cn=u÷Zaubn-u .

I 1 Then necessarily Ecncx-a)
"

converges
in I , and for all XEI

,

- -

R =

line, Wiant
=

nhjmosupcinha.I.ks.IE
[ " ° ] .

we have

Then the set of xeR for which the power series converges FZocncx.at = ( oancx
-at )(¥obnCx-at ) .

is necessarily an interval centred of adR-

pref . This follows from the multiplication of Series Theorem
,

Indeed since the power
series converges absolutely in I -

① If Ix -al > R, then nhjmaancx-a) to . so Ioan"-at d"

DIVISION OF POWER SERIES (TF- 29)
② If Ix-al CR

,
then ¥oanCx-at converges absolutely : and

"
s

suppose Zana, -a)
n

and Ebncx-a)
n

both converge
in an

③ If Ocrc R
, then n§oancx

-at
converges uniformly in Ea - r

,
atr]

.

open
interval I

,

with AEI
,

and that both -

Pewof . To prove
①
, suppose Ix -al > R . Then

Define Cn by

linmsfpillancx-alnT-lx-allinmgupihantsr.la -- I
, cos ago , and for n > o ,

cn= % - # co - BIT co - " ' - Ten-i .
and so by the Root Test

, nkjmancx-ai.to and so
Then there exists an open

interval J with AEJ such

Zan (x - a)
n

diverges - that Ecncx-at converges
in J

,
and for all XEJ, we have

To prove ②, suppose
Ix -al CR . Then that

tin?soup T1ancx-aI= Ix - allinmgup Tiant c R .# =L , Ioana, -ay = ¥o""e
¥7 bncx -a)

n

and so Elan ( x -a)
"

I converges , by the Root Test.

To prove ③ , fix ocrc R . By ②
,
Elancx-a)

"

I converges PIF ' choose r > 0 so that atr EI .

Note that Zlanrnl and Elbnrnl both converge .
when x=atr : ie Zlanrnl converges .

Since lanrnl → o and lbnrnl → O and boto , we can

Fix XE[ a -r, atr] . Then since Iancx-att E lanrnl and

choose M so that M 3/91-1 and M 3/41^-1 for all n -

Elanrnl converges , so by the Weierstrass M - Test

necessarily Elancx-att converges uniformly . D8 Note that lool = I I EM ,
and since c. = Iot big , we have

In the above theorem
,

lcirl E /a÷/ + /b÷/ Kol E M t m
'
= mcltm) .

①
"

I
'

is called the
"

radY
"

suppose , inductively ,
that tour'll E MCHM)

"
then

.

of the power series ; and
Then

,
since

②
"

I
' '

is called the
' '

interval of convergence
"

an = bnco + basic , + . . . + been- I + ↳ Ch
'

-
X

of the power series . ( 137.24) we have
n- ,

ABEL'S THEOREM (T't-23 (Y)) lcnrnl E I "b÷l + lbnjonllcol-lbn-jor-llc.rlt.it/bIllcn.,rn-
'

l

- !
Let ¥oancx-as

"

be a power series , with radius E m t m't m
-

( Itm) + m2ci+m5+ . . . + MZCHMY
"

of convergence
R and interval of convergence = m + my"tmn)

I .
: . learnt = MCHMY

.

Then
, if n§oanCx-at converges

when x=atR
,
then

So
, by induction , we have lcnrnlf Mcitm)

"

th > O .

the
convergence

is necessarily uniform on [ a
,
a -1123

.

At J
,
= (a - Fm ,

at Fm) , and let XEJ
,
so that Ix-all Im .

Similarly , if n§oanCx -a)
"

converges
when x=a -R, then

Then for all n we have

the
convergence is necessarily uniform on [ a -R

,
a]

.

lcncx-ail-lcnrnl-a.mn - I I
"

Puff - suppose Eancx -a )
"

converges when x=atR , ie

Zant converges
.

E m ) In
.

(et e > o .

choose N so that l >m > N ⇒ I mantel < E '
and so Elcncx-att converges by comparison

-

Then by Abel's formula and using telescoping , we have
Note that from the definition of an , we have

an -_ ocubn-h . and

I man Cx
-att = I man Rnc Y ) so by multiplying power

series
,

we have

a

=L manrnh i - i.EC?EanrnHiEi
"

- c I'll czcnc.

⇐ In.EanRnKI - izanrnkc I
'"

- c'÷Y)
"o

< ec let ell T - C 5) = et Tee ,

proving the series uniformly converges . DR

c-at)( Fznobncx-at)= Ioana-at VXEINJ, -

Finally , note that fC×) = ⇐obncx-a)" is continuous on I , and we
have fool -_ boto ,

So there exists an interval JCINJ,
with a c- J such that fcxlt-o-VXEJ.iq



COMPOSITION OF POWER SERIES INTEGRATION OF POWER SERIES (TF- 31)

( -17.30)
"
. suppose Eancx-at converges

in the interval I .

' ! Let fcx) = oancx-at in an open
interval I with Then for all XEI

,
the sum fcx) = oancx

-a)
"

is

a C- I
,

and let gcy) = obmcy - b)
m

in an open integrable on [a. x ] (or [ x. a] ) and

interval J with BET and aoEJ.

Let k be an open
interval with aek such that fa×¥oanCt -at dt = n¥/a×anCt -a)" at = ¥ona÷c×-ay".

FCK) CJ. Pref . This follows from uniform convergence
. Dk

For each m > o
,

let on,m
be the coefficients of the

DIFFERENTIATION OF POWER SERIES (TF -32)

product "
s
.

suppose Eancx-at converges
in the open

interval I .

⇐ocn.mu/-aT=bnfIIoanCx-aY - b )
"

. Then the sum fcx) = oancx-at is differentiable in I
,

Then m§ocn,m for all m > 0
,

and for a" * K' "d

fy×) = ¥
,

nancx-at
"

.

n§o( Ioan,m) Cx-at converges
and

qwef . we claim the radius of convergence of Zan"-a)
"
is

equal to the radius of convergence of Enancx-a)
" !

€o(¥ocn,m) Cx -at = 944)) -

Let R be the radius of convergence of Eancx-a)
"

,

and

puff . This follows from
Fubini 's Theorem for Series

'

let s be the radius of convergence of Enancx-a)
" "

.

since
Fix XE Ca - R, a -1121 , so Ix -al CR and Elancx-a)

" I converges .

gcfcxl)
= obmlfcx) -b)

m

choose r
,
s with Ix-al Criss R -

= ¥obm(¥oanCx-at - b) since nlisma.ir/snI=o , we can choose N so that n > N

we have
i. gift" = ¥o( Ioan,mcx-at) Inane,-ay , = InCFTC Tanit E l - l - tanit

.

Since Elansnl converges, necessarily Elnancx-att converges

by comparison , and so by linearity Elnancx-ay
- '
I converges .

Hence RES .

Now
, fix x C- Ca - S , ats) so that Ix-ales and 2- lnancx-at

"

I

converges .
Then Elnancx-a)

"

I converges by linearity , and since

lancx-att E lnancx-att , hence Elancx-a)
"

/ converges

by comparison . Thus SER and so 12=5 as claimed .

The theorem now follows from the uniform convergence of

Enancx- a)
" !
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