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Class 8:
Examples of Matrix 
Representations, Introduction to 
Inner Product Spaces
INNER PRODUCT & INNER PRODUCT

STANDARD INNER PRODUCT ON Mm×n(F) :
SPACES : (v. w > (D8. 1)

( A
, B> =trCAB*) ( ES-5)

-

let V be a vector space over IF.

Then
,

we say
the function C . , .) : V'→ IF let V=Mm×nCF) .

Then
,
the

"standard inner product
"

on V is given by
is an

' '

inner product
"

if

( A , B > = tr(AB* )
,

① (v.v> c- R & (v.v> 30 the" } Positivity m

② (v. ✓ 7=0 <⇒ v=o YVEVI where treat = ¥,aii for Atmmxm# ).

③ (v. + v2 , w >
= (Yiw> + < v2 - w >

th
' '%W€✓: } Linearity We can prove

this is indeed an IPS -

④ (cv, w> = ccyw> YCEF
,
YWEV : and

pyof . Linearity is trivial ( arises from fact that trace

⑤ (w,✓> = W.wy-V-v.wc.ir. } conjugate symmetry & matrix multiplication is linear ) -

'

In this case
,

we call ( v. w> the
"

inner product
"

Note that fur A=Caij ) & Bibi;), then B*=CbI ) .

of v & w .

Then
n

n

'

We refer to V together with C ; . > as an

"

inner

CAB
"

)i;
= ¥aih(B*)u; = [aihbih .

hit

product space
"

.

Hence

LENGTH [OF A VECTOR] : 11V11 (D8-2) m
m n

trCAB*) = EcAB*)i; = ¥
,
E. aikbiu .

"
Cet v be an inner product space ,

and let VEV - i= ,

In particular , this is
"

similar
"

to if we wrote
Then

,
the

"

length
"

of V
,

denoted by
"

1141
"

,

is defined to be equal to the entries of A & B in
FM

"

,
and took

1141 = NCYVT
.

the standard inner product of these vectors .

We can do this because CRÉ-

It trivially follows that this gives an inner product on V.
☐

ORTHOGONAL [VECTORS] (D8-3)
INNER PRODUCT ON C[aib] : (fix) . glx)>=/abfcx)gcx)dx"

let V be an IPS .

Then
,

we say v. well are

"

orthogonal
"

(€8.6)
if Cyw> = 0 . "

we can show Cca,b) with the function
ORTHOGONAL [ SETS] (D8-3)

( fcxl , glxl > =/abfcx)gCx)dx
' "

let SIV , where ✓ is an IPS-

is an inner product space .
Then

,
we say

S is
"

orthogonal
"

if

PIof . linearity & conjugate symmetry ( ie
"normal

"

symmetry . since field -412)
( V. w> = 0 Tv

,
WES .

EXAMPLES OF IPS : PART I follow pretty easily .

For positivity , note that

The vector space
V=F

"
with inner product

( ( n ). (I:L ) > = YWT + - . - tvnwn ( fan , fail >
= Jab fcxidx 3 fabod×=0 .

If f-1-0 , then trivially Jabfcxidx > 0 by EVT
,

is an inner product space . ( €8.3)

The vector space
V=PnlF) with inner product completing the proof . ☐m

( p,q>
= pcolqiot + - " + pin'Ñ Tw : ✓→ # By Twcv)= (v. W)

IS LINEAR (-18-211))

is an inner product space
'

CES -4 )
- !

Let wev, and let Tw : ✓→ IF by Tww) = <YW > the"

CONJUGATE MATRIX : Ñ (D8-4) Then necessarily Tw is linear
.

:
let A=caij)EMm×n(F) -

GET OF VECTORS ORTHOGONAL TO W IS A

Then , the
"

conjugate
"

of A
,

denoted by
"

A-
"

,

SUBSPACE OF V (1-8.212))
is equal

to

:
let well .A- = (AI ) e Mm×n(

F) .

Then the set of vectors orthogonal
to w is a

CONJUGATE TRANSPOSE MATRIX: A*= AT
subspace of V.

(1)8.4)
Puff . This follows from the fact that the set -_ker(Tw) . ☒

"

Then
,

the
"

conjugate transpose
"

of A is defined
to

be the matrix

A-
*

= AT C- Mn×m(F) .



I / ✓1170 tlvev
,

v=O <⇒ 1141=0 (-18-311))

"

let V be an IPS .

Then necessarily 114170 ltvtv ,
and 1hr11 __ 0 if

and only if v=0 .

Pref . This arises from properties of inner products.

llcvll = 14.1141 (-18-34))
- :

let V be an IPS
,

and let CEIF .

Then necessarily llcvll = 14 . Hull .

Pw_0f - This also arises from properties of inner products .

Icv, w> If I/ v11
. llwll i lcyw> 1--11411141<=1 v &

W ARE LINEARLY DEPENDENT

(THE CAUCHY - SCHWARTZ INEQUALITY ) (1-8.3137)

' "
let v. well

.

Then necessarily lcyw> If Hull
- llwll , and equality holds

iff V and W are linearly dependent -

Pioof . We show KYW>if 11h12 - 11Wh?

First
, if w=o ,

the result is trivial . Otherwise
,
assume

w -1-0
,
and let c=%÷F .

By (-8-34) :

Of Itv -cwli

= ( v -CW , v-Cw>

= ( v
,
v-cw> - CCW

,
v -CW >

= ( v
,
v > - c- < v. w> - CCW, vs + cc-cw.ws

= 11nF- c- < Yw> - CLYT> + 14211 wtf

= "ni - aw> - %÷ +

'%Y"wir

-

- " ni - "
-

'I÷ +

:O £11m
'

-

'Y,

and so / < v. w > 12 f 114121 / wit? as needed
.

Then
,
note that

I / v-CW 11 > 0 (⇒ v - cw -1-0 for some c- IF

(⇒ vtcw ' '

(⇒ ✓ &w are 1in ind
,

and so I / v-cwH=o < =) ✓ & w are 1in dep . if

11 ✓+WH f 11 v11 + llwll th,WEV (TRIANGLE

INEQUALITY) (1-8.3141)
:
let v. well .

Then necessarily llvtwllf Hull -111Wh .

Inef - Note that

IIVTWIF = Lvtw, vtw>
= (v

,
v> + < v. w> t cwiv

> + <w,w>

= 11h12 -1 (v. w > + CUT + 11W /12

= 11412-1 llwlit 2Re( v. w>

filmi-111Wh't Zcviw>

f 11412 -12114111Wh -1
llwli Cby CSE )

= (Hull -111Wh )?

and the proof follows - ☒



Class 9:
Orthogonal and Orthonormal 
Bases; The Gram-Schmidt 
Procedure
ORTHOGONAL & ORTHONORMAL BASIS (1)9. 1) V HANS ORTHONORMAL ORDERED BASIS 13=44 , .. ;Vn} ⇒

'

let V be an
IPS

,
and let BEV .

w= Icw,vi >Vi ((9. 1)"

Then
,

we say
B is an

"

orthogonal basis
"

i= ,

' "
let V be a finite - dimensional IPS

,
and let V have an

for V if :

① B is a basis for Vi and orthonormal ordered basis 13=14 , . . . .vn}
.

let WEV be arbitrary.
② B is an orthogonal set of vectors .

Then necessarily
' "

we
say B is an

"

orthonormal basis
"

for V
2

w = (w,v, > v , + . . . + ( with > Vn
.

if the above conditions are satisfied and

In other words
,1141=1 V-vc-BCW.ve>

SEV IS ORTHOGONAL & HAS NO ZERO VECTORS ⇒ [w ]
,

= ( : )
( w,Vn>

S IS LINEARLY INDEPENDENT (1-9.1)
PQY - This film almost immediately from -19-2.

let V be an IPS
,

and let SIV be orthogonal and

have no zero vectors .

Then necessarily 5 is linearly independent
.

☒f- let c , , . . . ,cnE1F, V
, , .
.-

,
vnts s-t

C
,
V
, -1

. - - + Chun a- 0 .

Taking the inner
product of each side with v, ,

we see that

0 = ( O, V, >

= ( GV , -1 . . . + cnvn , V17

= c
, ( v, ,v, > + - . . -1 Cncvn , V, >

= C
, 114112 -1 Czco) + . . . +cnco)

(since S is

orthogonal )
.
: 0 = c

, 114112,
and so since v

, -1-0 it follows that 9=0 .

Repeating this argument by taking inner products with

V21 . . .
/ Un given us that c

,
= . -- =cn=O, showing that

the vectors are linearly independent - ☒

V HAS ORTHOGONAL ORDERED BASIS 13=44 , .. ;Vn} ⇒
w=É<w Vi (1-9.2)

i =L IIVIIIZ
"
let V be a finite - dimensional IPS

,
and let V have an

orthogonal ordered basis 13=14 , . . . .vn} .

let WEV be arbitrary.

Then necessarily
( w,V, >

w= " + i. +

'

Y¥vn .

CW,v, >
In other words

'

¥
[WJB = ( i.

÷÷)
Puff. Since B is a basis

,

Ici , . .- .cn
→

W= C
,
V
, +

. .
- 1- Cnvn .

Taking IP of both Sids w/ v, yields
that

(w,V, >
= C

,
Cv

, ,v,
> + . .

. + cncvn.ir, >

= c ,
114112 -1 czco) -1

- -
. + cnco)

= c
, 11411?

and doing similarly fr vz , .. . , rn yields that

Cw,vi > = cillv,-112 V- Kien .

Thus ci=,Yu? , which suffices to prove
the

claim . ☐q



dim VC or ⇒ V HAS AN ORTHOGONAL
5-Ew, , . ..,wn} IS LINEARLY

INDEPENDENT;

BASIS (1-9.3)
Vi = Vi -

(Wi , vj >

g. = ,, Vj
⇒ ÉY , - - -run} IS

- :

let u be a finite-dimensional IPS -

ORTHOGONAL & IV, ,. . .,Vu} IS AN Then necessarily V has an orthogonal basis .

ORTHOGONAL BASIS FOR Spaniw, . .. .,Wk} iwof . Since dim ✓ <N ,
V has a finite basis

, say Ew, , . . . ,wn }
.

Then
, applying 19.1 to Ew,, .. -own} yields an

( THE GRAM- SCHMIDT PROCEDURE) ( 19.1 )
orthogonal set Iv, , . . . , un } , f which in . .

. -iris is an

'

= let V be an IPS
,

and let S=Éw, ,
. . . ,wn}EV be linearly orthogonal basis for spaniw, , . . . ,wn } = V. ☒

independent .

Define Ev, , . . . .vn } recursively by 4=4 '
and

dim ✓ < * ⇒ ✓ HAS AN ORTHONORMAL

vi. = Wi - Y¥v,
- . . . - <wi;¥i vi., ltkien . BASIS (9-2)

Then
- ÷

let V be a finite -dimensional IPS .① ÉY , - .
. .vn} is orthogonal ; and

② Ev, , . . . .vn} is an orthogonal basis for span Ew, , . . . . Wu} Then necessarily V has an orthonormal basis .

for any
IEKEN - PIG . This film by taking the basis obtained in -19-3 and

f. We prove
this by induction -

scaling each vector down by its respective norm - ☒

( n= , ) since w , -1-0
Cass is 1in ind)

,
hence Iv, } is orthogonal ,

and since ✓ ,=w , ,
so Spanier,} = spcniw,} , so

the conclusions trivially follow.

( inductive) suppose the claim is true f- Khan .

So ÉY , . . . , Vu } is an orthogonal basis for Spanier, . .. .,wu}.

We want to show similarly Ev
, .
. . ;vu+, } is an orthogonal

basis for span in . . --, wut , } .

Since we how- Iv, , . . . . he } is orthogonal , we just need

to check Vn+, is orthogonal to each Vi to verify

Évli
. -
-

, Viet , } is orthogonal .

Observe that

< Yet , , vi > = ( wut , -<Y'v,
- . . . - %YÉruin

= (www.vi > - "Y;<vi.ri >
- .. .

-

'

Yi<vi. ri >
-

.
. .
-

'

iwi >

= (www.vi > - O - - . . - <YYu¥ twill ' - . . . -0
= (wut , , ✓ i > - < wntiivi >

= 0
,

swing that vu+, is orthogonal to each vi.
and so

ÉY , - . -, Vuti } is orthogonal .

Next
, we show Spanier, . . . ., rut , } = Spaniw, , .. . ,Wh+, } .

By hypothesis, Spanier, , . . ..vn} = Spaniw, . . . . ,wu} , and since

(wwtlivl >
Vkti = wkti - Fav,

- . . .
-

he

shows that rue, is a 1in comb of ✓ , , . . . .vn ,Wu+i .
Sine thir is

also trivially the fr u, , . . . , Vu as well
, thus any 1in comb of

V11 . - - , Yeti is
a 1in comb of V1 , . . - , Vu , wait , and so

Spanier, , . . - , Vuti } c- Span ÉY , . . - , vk.wu.tl} .
Then

, Spanier, , . . . .ru }= Spanicw, , . . . ,wu} ⇒

Span vii.. -Nu ,wu+ ,}= Spanicw, , . . . . , Wu , wut , } , and so

Spanier, , . . . , Vwti } E Spanier, , . . . , when } .

Conversely , for kick-11 , since wi is a
1in comb of v , . . . . ,Vi ,

hence any 1in comb of Wi , . . - , wht , is also a
tin cowls if

V11 . . - i
✓U-11 .

So spaniw, ,
- . - , wht , }E Spanier, , . . . . Viet , } , and so

Spauiw, . . . . , why } = Span ÉY , :-, Vue , } .

Since ciw, , . . . , why , }
is 1in ind

,
it folks iv, , . . ,Vu+ , } is also 1in

Indi and so Ev, , . . . , Vue, } is an
ortho Kris f- Spain. . .. - way }

completing the inductee step .



Class 10:
Direct Sums of Subspaces and 
Orthogonal Projections

SUMS OF SUBSPACES : W
,
-1 .. . + Wn (☐10.1 ) d(v, pwjwcu)) E d(v.W) V-WEW (-110-412))

let W
, , . . . ,WnEV.

- :
let V be an

IPS
,

and let WEV be finite -
Then

,
the

"

sum
' '

of W
, , . .. , Wn , denoted as

dimensional
,
with orthogonal

basis Éw , ,
.. . ,wn } .

"

W
,
-1 . . . -1 Wn

"

,
is the set

let pwjw : ✓ → V be the associated orthogonal projection
W
,
-1 . . . + Wn = Ew, -1 . . . + wn : wie Wi , c- =L

, . . . ,n } .

Note the following : mapping .

Then necessarily for any ✓ c- V
,

we have that

① W
,
-1 . . . + Wu is a subspace of V , and

the smartest subspace containing Wii - - iwki dcv, pwjwcv)) E dlviw)
KNEW .

and Moreover
,
note that

② If span Isi } = Wi for each i
,
then

dlv,w) is smallest (⇒ W= pwjwcv) . ( 1-10-4 (3))

span ( ① Si ) = W
,
-1 - - - + Wk .

in p-wof.at/eien . See that

DIRECT sum OF SUBSPACES (1)10.2) a- pwiwcviwi> =(v-Y÷;Lw,
- %I¥wz- i. - %wI÷wn,w:>

-

let V be a vector space , and let W
, , . . ;WnEV-

= < v. Wi > -
<" Wi>

⇐ <wiiwi > - .. . -

< v. Wu>

¥2
<wniwi >

Then
,
we say V is the

' '

direct sum
"

of W
, ,
. . . ,Wk

= <v.Wi >
-

<Ywi >

if Twi llwill
'

① there exist unique vectors wiewi with ✓ = wit" - + wk = < v. wi> - < v. Wi>

for each ✓ c- Vi = 0 ,

② ✓ = W
,
-1 . . . + Wk and Win (Wit -" + wi-i-wi-it.i.tw/c)=&0} and so u - pwiwcv) is orthogonal to all the vectors wi , it follows

that v - pwjwcv) is orthogonal
to

any
WEW .

for each i=l , . . - , ki k

Hence
③ If Bi is a basis for Wi , then ¥ Bi is a basis

dlv,w)2 = Itv -WIP

for V. = ( ✓ - W ,
V - w >

Note the following conditions are equivalent - = ( v-pwjwcvi-pwiu.lv) - w , v
- pwiwlvltpwiwcv> - w >

= ( v-pwiwlvl.ir- pwiwcv) > + ( v - pniwlv) , pwiwcv)
- w >

:

3
In this case ,

we write that
+ cpwjwcv) - w ,

v- pwiwlv) > + cpwjwcv) - w, pnjwlv)
-w>

✓ = W ,
⑦ Wz ⑦ - i > ④ Wk .

= ( v - pwiwcv) , v - pwiwlvl > +0+0-1 Lpwjwlvtwipwiwcv) -w >
DISTANCE [BETWEEN VECTORS] : dcv,w) (1310-3)

= Itv -pwiwcvlli + llpwjwcv) -
wtf

:
let ✓ be an IPS

,
and let v. well .

i. dcv,w53 Itv - pwiwcvlll?"

Then
,

the
"

distance
"

between ✓ to w ,
denoted as

with equality only when pwjwlvl-w-0.ie w=pwiwcv) .
"

dcyw)
"

,

is equal to

Thus dlv,w) 3 Itv
- pwiwlv)H = dlv

, pwjwlv)) , and the above

d(v. W) = Itv - WII
.

observation also verifies uniqueness. ☒

The distance function obeys the
"

usual
"

properties of

distance (1-10.3) . pwjw IS INDEPENDENT OF ORTHOGONAL BASIS

ORTHOGONAL PROJECTION MAP : pwiw (v) (DIO
-4)

FOR W (-110-414))
"
- let V be an

IPS
.

and let WEV be finite
dimensional

,
with orthogonal basis Ew, , . . . ,wn} . - :

let ✓ be an
IPS

,

and let WEV be finite -

Then
,
the

"

orthogonal projection map
"

of V onto Wi dimensional
,
with orthogonal

basis Éwii .. . ,wn } .

denoted as

"

pwjw : ✓ → Vi is defined by let pwjw : ✓ → V be the associated orthogonal projection

( v. w , > mapping .
pwjwcv)

= w
,
+ - . - + %wwn wn .

let Ex, , . . . ,xn }
be another orthogonal basis for W

,

pwjwcv) IS A LINEAR TRANSFORMATION with associated orthogonal projection PWIW
"

-

(1-10.44)) Then necessarily pwjw = pwiw
'

-

:
let ✓ be an

IPS
,

and let WEV be finite - p-wof.BY Tio .4cz ) & (3)
, pwjirlv) is the unique vector

dimensional
,
with orthogonal

basis ÉW" -" iwn } - in W closest to v.

let pwjw : ✓ → V be the associated orthogonal projection since pwjw also satisfies this property . thus poi 'w")

mapping . = pwjwcrl.
Then necessarily pwjw is a linear transformation .

since ✓c-✓ was arbitrary, it follows that pwjw-pn.int ,
p_wof . See that as needed . ☒

pwiwcavi-s.ua)=""fw?">w, +
... + ""+fIn%wwn

= """Iw¥"w,
+ i. +

""""¥÷'wn
=ci[YI?w,

-1 . . - + YiInwf+ciY÷w,
-1 .it
"
""'

¥4]
= c

, pwjwcvi) + czpwjwcvzl .
☒



Class 11:
Orthogonal Complements and 
Polynomial Interpolation
ORTHOGONAL COMPLEMENTS : St dimvcx ⇒ (w-151 = W ; SEV ⇒ (5)

1-
= Spans

(-111-114))(DII - 1)
"
" let V be a finite- dimensional IPS , and let WEV be a subspace.:

at ✓ be an IPS
,

and let SEV
.

Then necessarily ( wt)
"
= W .

Then
,
the

"

orthogonal complement
"

of S
,
denoted

In general , if SEV . then (5)
"
= Spans .

as
"51

"

( read as
"

s
perp

"

) is the set of

Puff. let WEW. By deft , ( w, ✗7=0 View
-1

,

vectors orthogonal to every
vector in Si

and so we (wt)
-1

.

ThusWECW-tt.ie
By -111.1 (2)

,
dim wtdimw-i-dimv-dimw-1-dimcw-5.su

that

St = Ever I Cyw > =o Vives }
.

dim W= dimers! Hence w= @5$ .

dim WCW ⇒ w ④ W
-1
= V (TI 1. I (1)) Then

,
let sev and let w= Spanish By -111.113 ) . necessarily

"
let WEV be a finite -dimensional subspace - si =w ?

Taking orthez-1 complements on both sides yields
Then necessarily V=W④w?

Pnggf . See that for any wewnw? cwiw> =° b4 Cst)
-1
= (wt)

>
= W = Spans,

deft , so w=o necessarily - as needed . ☒

To show V=w -1W
-1

,

consider pnojw .

Ker pwjw = w
-1
,
ran pwiw = W (-111-2)

For any
vev, pwjwcv)

is a 1in comb of vectors

in W, and so belongs
to W itself. "

let V be an IPS
,

let W be a finite - dimensional
so subspace of V

, and let pwjw :v→v be the

v= pwiwlvl + ( v - pwiwcvl)

orthogonal projection onto W .* TE
'

since v - projwcv) c-
Wt from the proof of

T'" " ' " ' Then
necessarily Ker pwjw

= W
"

and ran pwjw
-_ W

.

Hence ✓ = wtwt
,

as needed- # P-wof.at Ew, , . . . , Wu } be an ortho basis for W .

let ✓c- her pwjw .
See thatdim ✓ < or

,
B
, ,Bz ARE ORTHOGONAL BASES FOR

Pniwcv> =

w
,
+ . . - + Y÷wn=o .

W
,
W
-1
RESP ⇒ B,UBz IS AN ORTHOGONAL BASIS FOR Vi

By 1in ind of Ew,, ..;wu} . hence <,YY÷?=o , and so

dim Wtdimw
-1
= dim V (1-11.112))

each < viwi > = 0
, which suffices to show that ✓Ew!

let V be a finite-dimensional IPS
,

and let WEV .

Thus pwiwcv)=oc⇒ vewt.ie her pwiw = w?
let B

, be an orthogonal basis for W
,

and let Bz be
As projwcvlew YVEV

,
thus ranprojwcw. Now , let

an orthogonal basis for W
"
.

WEW . We wish to show w=pwiwlw) .
Then necessarily B,UBz is an orthogonal basis for V

,

By 710-4
, dcpwjwlw), w) is minimal . But dlwiw)=0,

and in particular ,
showing that w is that

"
minimal element

"

,

so
that

dim W -1 dim W
-1

= dim V.

w - pwiwlw) , as needed . ☒

PIF - let B,=&w, . . . .,wu} & Bz=É×, , . . . ,✗e} . As V=w+w?

thus B. UBZ spans
V.

To show B,uBz is an orthogonal basis
,
it suffices to

show

BIUBZ is orthogonal , as then B. UBZ would be 1in

ind by -19.1 .

To show His
,
we just need to show cwi ,×j >

=o
,

as B1 & Bz

one already orthogonal by construction .

But this follows from the fact that wiew & xjtw
"
.

Thus B
,
V13
,

is an orthogonal basis for V, so that

dim ✓ = dimwtdimw
"
. ☒

Spank)=W ⇒ s-i-w-CTII.tl}))
"
let WEV, and let Spano ) = W

.

Then necessarily St -_ w -1
.

In other words
,

to check if VEW? it suffices to

show v is orthogonal to every vector in 5 .

f- See that

VEW
-1
⇒ v is ortho to all vectors in W

⇒ v is ortho to all vectors
in 5 Cas sew)

⇒ vest
,

so notes?

Then
,
let vest

.

We want to show cv.ws :O ltwtw .

By def : of S
,

7- W
, ,
.. . ,WueS , c

, , . . . , cue
# →

C , W,
+ . .

. + cuwk = W .

As <Ywi > = 0 for each i ( since
vest)

,

thus

( V
,
W>

= Cv
, qw, -1

- - . + cuwu >

= [ ( v. w ,> + . . . + CJCV, Wu>

= Ico) 1- . . - + Tuco) = 0,

so VEW
!
, so that STEW-1

,
and so S

-1
: W

-1
, as

needed . ☒



LAGRANGE INTERPOLATION : FINDING A

POLYNOMIAL TO APPROXIMATE DATA

(1-11.3)
"
let MEN ,

and let lx, ,y , ) , . .. ,(×m-11,9m-11 )
c- R?

let D= Epi , - . . ,p^m+, } EPMCIR), where

⇐ =

.
ieiem" .

Then B^ is a basis for PMCR) , and

plxi )=y; theism-11 (⇒ p=y,Ñ+ - . - + ym+iP^m+ , .

Pref . see that

picxk)= = (some stuff ) (✗a- xu1=o if i -1-6 ,

and

ñixi"
= "

Hence

p=y,pT+ . . + ym+,p^m+ , ⇐ pcx;) = y ,Ñ(✗, ) -1 . . - + yipilxi)
+ . - i-ymtipm.nl/mti)

(⇒ p(✗ it = y , ( o ) + . .- + yilllt - - - + Ymti ' "

(⇒ plxil -- Yi '

To show Ñ is a basis for PMCR)
,

we need only show

its 1in ind
, as 113^1 = met = dim PMCIR) .

let c, , . . .,cm+ , c- IR such that

c ,Ñ + .
- . + Cmt,Ñm+ , = 0 .

For
any IE ifmtl and evaluating both sides at × ; yields

0 = c ,p?C✗;) -1 - . . + cipicxi) + . . - + cm+,P^m+,l×i )
= 0 + . . . + Ci (1) 1- . . . + 0

:-O = Ci ,

and so C
,
= . .

. = Cmt,
= 0
, showing 1in ind , and we're

done . ☒

COLUMN SPACE [OF A MATRIX] : Colla)
(DII -2)

,

"

let Aemmxnclf ) .

Then
,
the

"

column space
"

of A
,
denoted as

"

(01cal
"

,

is the set of vectors in Fm of the form Ax
,

where ✗ c- IF
"
.

Equivalently , Colla) is the set of all linear combinations

of columns of A .

In particular, Colla ) is a subspace of IFM
,

and

the columns of A span
COICAI . (-111-4)

AEMm×nCR) ; Col (A) = Null (AT) ( ( II. 1)

' "

let Aemm×nCR), and give
RM the standard inner product

.

Then necessarily COKA)
-1
= Null (AT ) .

Puff . Since COICA ) is spanned by A's columns
, by Tlc . / (3) we

know
YE (columns of A)

1-
=) ye Colla)

-1
.

let
ye Null CAT) ,

so Aty=0 . In particular,

Atg = (
- a

'
-

) y = (
<

ayy >y~
> "dinner product

Cie dot product)
i.
- an -

<any > ,

so ATy=o ⇒ Lai ,y> =o
⇒ y is ortho to each ai ,

so YECOICA )? so Null CAT)E Colla )
-1
.

Conversely , let yecoicat, so cai.y-o-vi.ly the

computation above
, ATy=o, so yenullcatl. Hence

↳ ' (A)
"
c- Null (At) , and so co,(A)

I
= Nunca 'T. as needed . ☒

✗ER
"

MINIMIZES 11A✗- by <=) ATA✗ = Atb
(1-11.5)
:
let A- c- Mm×n( IR) and be 112m .

Then ✗ c- Rm minimizes 11 Ax - btl if and only if
ATAX = Atb .

PIOF . See that

✗ minimizes IIAX- btl ⇒ AXC-pwjc.ua,(b) (since AXECOICA) and

by 710.412))
⇒ AT( b- Ax)=0 ( by Lil - 1)
⇒ ATA ✗ = Atb,

and

A-TAX = Atb ⇒ A- Tcb - Ax ) = 0

⇒ b-Ax c- NUNCA 'T = Colla)
-1

( by 111.1 )

⇒ Ax = pwjc.ua, (b) (see reasoning
-

Penhall)
⇒ IIAX-bit is minimized

⇒ ✗ minimis IIAX -411,
as needed . ☒



Class 12:
Linear Transformations on an 
Inner Product Space
[T:v→w] PRESERVES INNER PRODUCTS (1)12.1 ) 44. . - ..vn} IS AN ORTHONORMAL BASIS FOR V,

- : let CV, c.is) & (W
,
E;-]) be IPS , and let

CLTCV, ), . . .. Tcvn)} IS AN ORTHONORMAL BASIS FOR
IT:v→w be linear.

Then
,
we say

T
' '

preserves inner products
"

if W ⇒ 7 IS AN ISOMORPHISM OF IPS (-112.1 (4))

[Tlv
,
)
, Tcvz)]

= 1- (< vi. v27) YY ,VzEV.
' "

let T:V -7W be linear
,

and let Ev, , . . . ,vn} be an orthonormal

In particular, we say T is an

"

isomorphism
" basis for V such that { TCYI, . . . , Tcvn)} is an orthonormal

basis for W .

of inner product spaces if
T is also an

Then necessarily T is an isomorphism of inner product spaces .isomorphism .

PIG. First
,
we show T preserves IPs .POLARIZATION IDENTITIES

"

The polarization identities state that
let ✗ i.✗zev, say

✗ , = c ,v, 1-
- . - + cnvn & ×z=d,v, -1 . . - + dnvn .

① ✓ over IR ⇒ <× ,y >
=

'

-411×+9112+411×-9112 ; & Then
=

② ✓ over € ⇒ <✗
iy>

=
'

-411×+9112-1 llxtiyli- Lynx-yip- ÷
,
,/ ✗ -iy , ,?

Tcx, )=c , -1cm ) -1 . . - + cntcvn ) & Tcxz)=d , Tcv, ) -1 - - - tdntcvn ) .

See thatPIL . This can be verified by expanding the norms

in the RHS in tens of IPs . ☒
(✗ 11×2> = < civ, -1 - - - + cnvn , div, -1 . . - + dnvn >

T PRESERVES INNER PRODUCTS (⇒ T PRESERVES = ÉÉcidj<vi. y. >i=ii=1
NORMS (1-12.1 ( t )) = Écidi < vi. Vi >

i= ,"
:
let V

,
W be IPS

, and let T:v→w be linear
.

n

= ¥
,

cidicl ) Cas 11%11=11
Then T preserves inner products iff T preserves norms ;

ie 11TH)Hw= 11×14 YXEV. :-<✗11×2 > = i§Cidi ,
and

Pref . If T preserves inner products, by def: of the norm
,

[TCX, ) , -11×2)) = [T( civil - - - tcnvn )
,
Tld ,v, -1 . . - + dnvn) ]it also

preserves norms
.

= [c. TCV.lt . . - ten -1cm) , d ,TCv, ) -1 . . . -1 dntcvnl]Now
, suppose

T preserves
norms

. If V. W one
n n

over v2
,
then by the polarization identities :

= ¥,¥ii dj-ETcvil.TW;D
[Tcx), Tcy) ] = ¥11 Tlxlttlylliw -1 ¥11 -11×1 -Tlylliw = ¥,cidj[Tcu;) , Tlv;D

= tyll-cxtylliw-tyil-cx-ylli.no
=

,
cidjc , ,

Cas 11714111=1 )

= tyllxtyliu -1 Elix-ylif
= ¥2 ,ciÑ,= ( x,y > ,

and the
case where v. W one over e is similar

. showing T preserves IPS -

showing T preserves IPs as well . ☒ By -112.1121
,
they T is 1-1 . In parts

-4
. since dim ✓ = dimw

,

T PRESERVES INNER PRODUCTS ⇒ T IS 1- I (1-12.112)) thus T is also an isomorphism ,
and we're done

. 18

"
- let T:V→w preserve inner products . B=(✓, , . . . .vn) IS AN ORTHONORMAL BASIS FOR V =)

Then necessarily T is 1-1 .

IT]B= ((Tcu;), v;))ij c- Mnxnclf) (1-12.2)
PIOF . We will show her T=Éo}

.

If ✓c- V → Tcu)=o
,

then
+" """9 ' :

let V be a finite - dimensional IPS
,
and in particular, let

[ T(v1
,
Tcu)] = [0,07=0

- B=(v
, ,
. . . .vn ) be an ordered orthonormal basis for V.

Since T preserves IPs
,
we have that let A = IT]

,
.

Then necessarily

[ Tcu )
,
Tcu) ] = ( v, v > = 0, so V=0 if

Tcu) :O . Aij = ( Tcu;), Vi > HIEI,jEn .

Thus her 7=40} , as needed . ☐q PIof. By car -1
,
we hone that

T IS AN ISOMORPHISM OF IPS
,
Ev, , .. . .vn} IS AN [Tcy

. ) ]
,
= (

<"" " " >

) tlkjcn.i.

ORTHOGONAL/ORTHONORMAL BASIS FOR v ⇒ < Tlv;).vn>
Since Etcy. )7☐ is the g-

th column in [T ], , it followsÉTCV, ), .. ., 1-Cvn)} IS AN ORTHOGONAL/ORTHONORMAL BASIS that the entry in the ith now & ith column of

FOR W ( -112 - I (3)) IT]
, is CTU;), vi > ,

:
let T: ✓→w be an isomorphism of inner product spaces, and let as needed . ☒

ÉY , . . ..vn } be an orthogonal
( or orthonormal ) basis for V

.

Then necessarily ÉTCV, ) , . . . , Tcvn)} is an orthogonal (or orthonormal ) basis

for W .

PIOF. We first show & -1141
, . . .,

Tcvnl } is orthogonal .

Since Év
, , . . ..vn } is orthogonal, thus <vi. vj > =0 V-i-tj.AT preserves

IPs
, thus [ Tlv;)

, Tcvj ) ] :O V-i=j , which shows ÉTCYI
. .
. .,TWn) } is

orthogonal .
Then

, as T is an isomorphism, thus T is 1-1
,

so Tlv;) -40 V-ki.cn

and her T=&o} .
In patient, ÉTCV, ) , . . . , Tcvnl } is 1in ind by -19.1

.
Since TCV)=W,

thus dim ✓ = dim W
, and so it follows that Étcvil, . . . , Tlvn ) } is a basis

for W
, which is what we waned to pure . ☒



B =(V, , . . . , Vn ) IS AN ORDERED ORTHONORMAL BASIS

FOR V ⇒ (x,y>
= Ty],} -1×7,3 (42.1)

:
let V be a finite - dimensional IPS

,
and in particular, let

B=( v
, ,
. . . , vnl be an ordered orthonormal basis for V.

let ×
, yer . Then necessarily

Cx,y > = Ty ]B*E✗]B .

Pref. let [✗ 3,3 :(E.) & [y7B=(I:L ) . Then

< ✗' y> = ( C , V, +
. -- + cnvn , d. V, -1 . - - + dnvn )

= FÉFÉ, cidj < vi. Vj >
=

,

cidi

= cat . . . DJ )(?:')
Cn

= Ey],z* Ex ],} . ☒

B= Cv, , .. . .vn) IS AN ARBITRARY ORDERED ORTHONORMAL

BASIS FOR V ; T:V→V IS AN IPS ISOMORPHISM

(⇒ ET]* = [T]
-1

B (1-12.3)B
'
"
i let V be a finite - dimensional IPS, let T:V→V be linear

,
and

let B=Cv
, ,
. .
-

, vn ) be an ordered orthonormal basis for V.

Then T is an inner product space isomorphism iff

T.TT#=ETYj'.P-wof-C--DByoy?,CTCx1,Tlyb--Cx.y7V-x.yc-V
.

By 212.1
, LX,y>= [y]# Ex], & < TCH

, Tly ) > = -11-41,3*[17×1],} .

We also know

[ Tcx) ]
,
= IT]BE×]☐ & [ TG )], = IT],zEy]B .

Hence

( Text
, Tly) ) = [Tty> 7,3*[-11×1],

=( ET]B[g)B)
*

([T], -1×3,3 )
= Ey]B*( c--17¥ IT], ) -1×3,3
( = Cay> = Ey]B*E×]B ) .

We claim this implies ETJÉET]B= In .
Indeed

, let Ty],]=ei & [×3p= ej .
Then ([T) [T]

, ) -1×3,3 picks out the jth column of IT]B*ET]B , &

taking the
product on the left with Ey7p* gives the Ci

, ;) entry
of [TTFGETTB .
On the other hand

, (g)
*
Ex]p=ei*e; =D

°
' i=j which suffices

l 1
, i=j

'

to show T.TT#pET3B-- In , and so IT]B*= ( E -17,35! as
needed . Dq

((=) We first show T preserves IPs. See that fnxiyev, we
hone that

(Ta), Tcy) > = [Tcy)] [-11×1]
,

= Ty]# LET]B*ET]B)E× ],
= [g) ( In) -1×3, Cby assumption)
= Ey] Ex]

,
= <×,y> by 42.1 .

Hence
, by -112.1cL)

,
T is 1-1 . Since T:v→v, thus

T is an isomorphism of IPS
,
as needed. ☒

UNITARY MATRICES : A*=A" (1) 12.2)
"
let AEMn×nCF ) .

Then
, we say A is

"

unitary
"

if A
*
= A- !

T
ORTHOGONAL MATRICES : A = A-

'
(1312-2)

let Aemnxnc# 1 .

Then
,
we say

A is
"

orthogonal
"

if A? A- !



Class 13:
Diagonalization Review
A:(
-ai-

n
-
) ⇒ ID:(11=7^-7 IF 2 Dce, , ...,en)=l

& Dla, , ...,a; -1,9;
+Cbi , ait, , . .- , an)=D(91 ,

. . - can) -1 1)(911.
- iai - libi , ait , , .. . , an) &

ai=aj ⇒ Dca
,
, . . .
.
ai , .. .,aj, . . - ,anl=°

'"3.1)
T IS INVERTIBLE

:
There exists a unique function D :( "⇒

"

→ IF such that : (=) [T]B IS INVERTIBLE FOR
1

① If e , , . . ,en
are the standard basis vectors , then ANY ORDERED BASIS B OF V (43-1)

Die, , - - ien> =\ : :
let g. ✓→ ✓ be linear on a finite-dimensional vector space

② D is
" multilinear

"

; ie if we fix Kien
,
c- IF & biett?

V.
we have that

Then necessarily T is invertible iff IT]
,
is invertible for

1) (a, , . . . , ai- , , aitbi , ait , ,
- . -

,
an) = ☐Can .- - , Gi-1. ai , ait , , . . . , an )

+ D( an - - r

, ai-i. bi , ait , , - . . , an) : &
every

ordered basis B of V -

③ D is an
"

alternating function
"

; ie if ai=aj for itj , then Pay . (⇒ ) let B be an arbitrary
basis of V.

we know IT
-1:V→V 7 T

- '
oT= To -1

"
= I

.

☐ ( ai , . . - , ai , . . . , Aj . . . - , an ) = 0 . Hence

In = [I ]B= [ To -1
"

]
,

= [ TIBET
" ]
, ,

In particular, Dla , , . . . . an ) is the
"

determinant
"

of A :(
' "
'
-

-1
.

showing [ T), is invertible .
*
this is an alternative definition of determinants (aside from the

( (=) suppose T is not invertible .
In particular T is not

cofactor definition) . 1-1
,

so 7- Otvev 7 Tlv)=0 .

DIAGONAL17ABLE [LINEAR OPERATOR] (1313-2) The any
ordered basis B. Translating into matrices - this

-
"
s let V be finite- dimensional , and let T:V→V be linear . [Tcu ) ] ,

= [ T]p[v3, = [03,3=0 ,

Then
,
we say

T is
"

diagonalitable
"

if there exists an showing that [ v3
, c- Null

CET]☐ ) .

Since [ v3
,
-1-0

,
thus [ T]

,
is not invertible . ☒

ordered basis B for V such that [ TTB is a diagonal
matrix .

ce # IS AN EIGENVALUE OF T <=)

DIAGONALIZABLE [MATRIX] (1) 13.2)
det [T- c-17,3=0 FOR SOME BASIS B OF V

' : let Aemnxnclf) .

Then
,
we say

A is
"

diagonal
-

table
"

if the matrix ((13.2)
Cet dimvcoo , and let T: ✓→ V be linear .

multiplication operator Ta :#
"

→ #
"

by Tacx)=A× VXEIF
"

Then
,
CEE is an eigenvalue of T iff-det-T-cII.rs __ 0

is diagonalizable . for some choice of ordered basis B of V .

[OF LINEAREIGENVECTOR & EIGENVALUE Prgof . (⇒ let c- F be an eigenvalue of T
, w/ eigenvector

OPERATORS] (1713-3) vev .

So Tcu)=cv.
and so ( T-cI ) ( v) = 0 .

"
- Cet T:V→V be linear .

1
Then

,
we say

0 _+veV is an

"

eigenvector
"

of T if In particular ceker Cecil , and as Cto , thus
TCI

is not 1- 1 .

there exists some a- IF such that Tlv )=cV .

Hence [T-CI ] is not invertible by L'3 . " and "

B
In particular, we call a- IF an

"

eigenvalue
"

of det [T-CI]p=0 .

T. ((=) If det[T- if], __o , then by CD.IT
-CI is not

EIGENVECTOR & EIGENVALUE [OF MATRICES] ( ☐ 13.3) invertible
.

In particular, there exists a 0 f- ✓c- ✓ + (T-c -1101=0 .

"
let AEMn×n(F) . Hence

"

Then , the eigenvectors
and eigenvalues of A ore just Tcu)=cIcv)= cv

,

showing that c is an eigenvalue of
V. ☒

the corresponding eigenvectors and eigenvalues of TA .

CHARACTERISTIC POLYNOMIAL [OF T:V→V) ::
In other words

,
0=1 ✗ c-F

"
is an eigenvector of A if2

cct) ( 1313.4)Ax=cx
,

and in this case say that CEIF is the

-
"
:
let dim Vcd, and let T:v→V be linear

.

associated eigenvalue .

"

Then
,

the
"

characteristic polynomial
"

of T is the

EIGENSPACE (-113-3)
polynomial

let T:V→V be linear
,

and let ceif be an eigenvalue of
' [ (f) = det [T - t -17,3 ,
T.

Then
,
the

"

eigenspace
" associated to c

,
denoted as

"

Ec
"

' where 13 is
any

ordered basis for V.
- :

2
In particular, if B

'

is another ordered basis for V , then
is defined to be the set

necessarily
Ec = IVEV : Tcu)=cv } .

( ( 13.2)
detect - TI ]☐ ) = det( [ T - TI ]☐ . ) .

Indeed
,
Ec is a subspace of V -

Pzof. We know

ETYj-p.FI], ' [TIB . (
☐
FI]
,
)
-1

.

let P= B' [I] , .
Note [I]B= [I], ,=n=

dim V
.

Then
, see that

def [T- TI]
,
,

= det ( IT]
,
,

- C- [I]☐ , )

= det( [TIBI - tin )

= detc PET] , P
- t
- t CPINP

-'

))

= def CPCET] ,
- tin)P

-

)

= detcp )det( IT], - tin
) detcp

"

)

= def ( IT] , - 1-In )

= det.LT - 1- In] ,
as needed

. ☒



ALGEBRAIC MULTIPLICITY [OF AN

EIGENVALUE] : ac (1713-5)
:
let dim VCD ,

and let T :V→V be linear
,

and

let CEIF be an eigenvalue of T.

Then
,
the

"

algebraic multiplicity
"

of c
,

denoted
"

ac
"

,

is the largest positive integer
kept such that

Ct -c)
h

is a factor of the characteristic polynomial
Cct) .

GEOMETRIC MULTIPLICITY [OF AN EIGENVALUE] :

gc ( 1313.5)
"
let dim VCD ,

and let T :V→V be linear
,

and

let c- IF be an eigenvalue of T.

Then
,
the

"

geometric multiplicity
"

of c
,

denoted by
"

go
"

,

is defined to be equal to

go = dim Ec .

I Egc Eac (-113-411))

:
let T:V→V be linear

,
and let CEIF be an

eigenvalue of T.

Then necessarily leg, Eac .

T IS DIAGONAL-1-7ABLE c⇒ gc=ac Yc

(1-13.4021)
"
let T:v→V be linear .

Then T is diagonal
'

table iff gc=ac for any

eigenvalues c- IF of

T.ci
, . . ..cn ARE THE DISTINCT ROOTS Of Cct ) ⇒

Ec
,
-01 . . - ④ Ecui T IS DIAGONAL-17ABLE c⇒

Ec
,
④ - . - ④ Ecu -- ✓ (-113-407)

' "
-

let T :V→V be linear,
with characteristic polynomial

( (t) .

let c
, ,

. . . .cn be the distinct roots of Cct ) .

Then necessarily

① Ec
,
-01 . . . ④ Ecu ( ie sum is direct ) ; and

② T is diagonal,
- table iff Ec

,

-01 - - . ⑦ Ecu = V.

Pw_of. let's first show ① .
We do this by showing

Eci n (Ec, -1 . . . -1 Eck
) = Io } leiek .

let ✓ c- Eci ACEC , -1 . . - + Ecu ) . In patiala,
Tcu) = Civ & v=w

,
-1 . .- + wiytwitlt

- -- + Wu

for some Wj C- Eg. for each j .

Suppose we chose W
, ,
. . .

, Wu so
that the #

of non- ten vectors is as minimal as possible .

If TCW
,
= -- - =wu=o ) ,

WLOG assume Wu -1-0 .

Then
,

civ = Tcu ) = T(Wit
. .- t wit -1 Wit ,

+ . . - + wut

= TCW
,
) -1 . .- + Tlwi , ) + Tlwit,) -1

.. - 1- Tlwu)

= C
,
W
,
-1 . .. + Ci , Wi -,

+ (iwi 1- - - - + Cuwu,

but as V=w
,
-1 . . - + wit 1- wit , -1 . . - + Wu . thus

Cuv = Caw, -1
- -. + cuw; -1 + chwi+, -1

- . - + Cuwu .

Hence

Cci - (a) ✓
= ( C

,
- Cklw, -1 . . -

+ Cci-1 - Cu) Wi -1
+ (Citi - (a) wit , t.it Own

.

Dividing by ci - ca , we see that we have written ✓ as a

sum of fewer non - zero vectors from the other subspaces than

we had before - a con-11 to or initial assumption .

Thus W
,

= -" = Wi - , = Wit, = . . . =wu=o ,
so ✓ =o

, completing
the

proof that Ec
,

+ .. - + Ecu is direct .

Next
,

since a basis for Ec
, -10%2+0

. - - ④ Eca is built by

combining bases from Ec
, ,

. . -

, Ecu , if V= Ec
,
-10 . - -④ Ecu , then

we can obtain a basis for V by the above .

In particular, we can find a basis of eigenvectors of T

for V , showing that T is diagonal izable .

Conversely, if T is diagonal,zab6 , then there is a basis for V

consisting of eigenvectors of T.

Each of these eigenvectors belongs to one of the spaces Eci . and

so putting together bases for Ec
, ,
. .. . Ecu yields a basis of V, which

suffices to show E. ④ - . - ④ Ecu __ V.



Class 14:
Orthogonal Diagonalization
AEMn×n( IR) IS ORTHOGONAL <⇒ COLUMNS OF A ORTHOGONALLY SIMILAR (1314-1)

FORMS AN ORTHONORMAL BASIS FOR lR^ WRT "
let A. Bemn×nc¥) .

Then
,
we say

A is
"

orthogonally similar
" to B if

STD INNER PRODUCT (44-1)
there exists an orthogonal matrix Ptmnxn "R)

such

"

let AEMn×n( IR)-
that

B =p
- '
AP = PTAP ( since P is orthogonal ).

Then necessarily A is orthogonal if the columns of A forms an

ORTHOGONALLY DIAGONALIZABLE (1314-1)
orthonormal basis for R

"
l with respect to the standard

- "
let AE Mn×nlR•) .

inner product ) . Then
,

we say
A is

"

orthogonally diagonalizable
"

if
Pw_of . Recall A is orthogonal ⇒

AT=A- '
,

A is orthogonally similar to some diagonal matrix
ie

In __ ATA
. D C- Mn×nCR) .

Then
,
the Ci,j) entry of ATA is given by

UNITARILY SIMILAR (1) 14.1)
n

ÉCAT)ihAuj = ¥,AniAnj= < aiiaj?b- I ": let A
,
B c- Mn×n(£) .

where ai is the ith column of A . Then
,

we say
A is

"

unitarily similar
"

to B if

Then
,

ATA = In iff CATA!i=l & CATA
!j=0 itj, there exists an unitary matrix Pemnxnt) such

and so in patiala, that

Cai , ai > = I & <aiiaj > = 0 V-i±j . B= p
- '
Ap = p*AP (since P is unitary ) -

Hence the
ai form an orthonormal set for V27 UNITARILY DIAGONALIZABLE (DIY- 1)

and as I Éa , , . . , an}l=n= dimitri , this set is also a basis
"

:
let AEMn×n( E) .

for *
"

l as needed
. ☒ Then

,
we say

A is
"

unitarily diagonal itable
"

if

AEMn×n(E) IS UNITARY <⇒ COLUMNS OF A A is unitarily similar to a diagonal matrix
^
WRT

FORMG AN ORTHONORMAL BASIS FOR ①
Demnxncci ) .

STD INNER PRODUCT (44-1)
AEMn×n(IR) IS ORTHOGONALLY DIAGONALIZABLE

"
let Aemnxnic) .

⇒ A IS SYMMETRIC ( Ll 4.2)
Then

,
A is unitary iff the columns of A form an

orthonormal basis for En with respect to its standard
"
: let AEMn×nlR), and suppose A is orthogonally

diagonal itable .

inner product .
Then necessarily A is symmetric lie AT __ A)

.

PIOF . See that A is unitary c⇒A*=A
- !

Pw_of . Since A is ortho diag,
7- diag matrixDC-mm.nl/R)ieA*A--In

,

such that A is ortho similar to D; ie
or in other words

n
n

7- ortho Ptmnxnllf) 7

ECA*)iuAnj=¥iÑAuj .
k=i D= P

-'

AP .

which is exactly a
"

's IP .
The rest of the proof is like

Hence

A = PDP
- l

= PDPT
.

the real case . ☒

TA IS DIAGONAL-17ABLE WRT ORDERED BASIS B ⇒ since D is diagonal , it is also symmetric .

Taking transposes of both sides yields that

7- UNITARY ( ORTHOGONAL) P 7 ☐ =p
-' [TAJBP; P= ( b, - . . bn)

AT = ( PDP -11T = PDTPT = PDPT = A ,
"
-

let Aemnxnllf ) -

suppose Ta is diagonal izable with respect to some orthonormal showing that AT __ A
, as needed .

ordered basis B , so that D= ETA] ,B is diagonal .

Then necessarily
there exists an unitary (orthogonal if 11=-412)

matrix Pemnxnclf ) such that

D= P
- '

AP
,

and if B= CY , . . . .vn )
,

then

P= ( v
,
. .
. Vn ) c- Mn×ncF) .

Puff. let s be the Std ord basis of A-
n

,
so that

[Tats = A .

Then
-1

ETA] , =(s[Iv], ) ETA]s(s[IMB ) , - c* )

where V=F? Then , see that

s[I✓]B = ( [vis . . . Eun]s) ,

and as B is orthogonal & Evils are just the

"

standard
"

representations of Vi for each is

4744.1 g[Iv], is unitary [ ortho if IF -412) .

letting p= g.
[Iv],

and subbing hack into ( *1
,

we see that

D= [TA], = P
"

ETA ]sP = P
-"

AP
,
(since S is the

Std ord basis of F)

as needed . ☒



AEMn×nCR) IS SYMMETRIC ⇒ EVERY EIGENVALUE

OF A IS A REAL NUMBER (1-14.1)

"
- let AEMn×nCR) be symmetric .

Then necessarily every eigenvalue of A is a real

number .

Puff . let CECI be an eigenvalue of A
, w/ corresponding

eigenvector ✗een
,

so that A✗=c✗ -

see that

CCX ,✗ > = Ccx, ✗ )

= < Ax, × >

= ✗
*
LAX)

= ✗
*
( Atx) ( since AEMn×nCR) & A is

symmetric )
= (×*A*)x
= ( Ax)*✗

= < ×
,
Ax>

= < ✗ ,c×>

= c- < × , -17,
→

so in patiala , c -5 . As ✗ to , so < ×,x> 1=0 , so

CEIR
,
as needed

. ☒

SELF-ADJOINT [MATRIX IN ① ] (1)14.2)

-
"
- let AEMn×n( §) .

Then
,
we say

A is
"

self-adjoint
"

if A*=A .

Aemnxntc) IS SELF - ADJOINT ⇒ EVERY EIGENVALUE

OF A IS A REAL NUMBER CCIY-1)

let Aemnxni) be self-adjoint .

Then necessarily every eigenvalue of A is a real number .

PIOF . Same as -114.1
,

since A*=A .
☒

A IS SYMMETRIC, Cc, ,v,), Ccz,vz)
ARE EIGENVALUES/

VECTORS OF A =) v, & v2 ARE ORTHOGONAL

(1-14.2)
"
let AEMn×n(E) be symmetric, and let v

,
& v2 be eigenvectors

corresponding to the eigenvalues c , & cz of A respectively .

Then necessarily v
,
& v2 are orthogonal with respect to the

standard inner product of IR?

Puff . See that

C , CY , Vz) = < C
,
V, , V27

= CAV
, ,Vz

>

= vzTCAv, ) (as all entries in IR)

= vzT(Atv, ) ( A is symmetric)

= (Aviv,
= Cv

, ,
Avz>

= CV
, , Czvz>

= CZLV, / V2 ) ,

and as c , _tcz , the equality holds iff < v. Nz> =0 , showing the

claim in question - ☒

A IS SELF-ADJOINT, Cc, ,v,), Ccz,vz)
ARE EIGENVALUES/

VECTORS OF A ⇒ v,
& v2 ARE ORTHOGONAL

( ( 14.2)
:
let AEMn×n( §) be self-adjoint , and let u

, & v2 be eigenvectors
associated to the eigenvalues c

,
& Cz of A respectively.

Then necessarily v
,
& v2 one orthogonal with respect to the

standard inner product on 1C?

Pref. Almost identical to the proof for
1-14.2 .



Class 15:
Orthogonal Diagonalization 
Continued; Unitary 
Diagonalization

V OVER ① =)
ADJOINT EOF A LINEAR OPERATOR] : TY.

7- ORDERED ORTHONORMAL BASIS FOR V7 IT],}
< Tcu) , w > = < v,

1-
*
(w) > ( -115.1 ( t))

IS UPPER TRIANGULAR CC SCHUR'S THEOREM I>>
' "

- let T:V→V be linear
,

where dimvcoo .

Then
,
the

"

adjoint of T
"

,
denoted as

"

1-
* "

,
is ( T 15.2( t))

defined to be the unique linear operator such
- :

get ✓ be finite - dimensional
and over ①

,
and let T:V→V

that

( Tcu) , w >
= Cv

,
1-
*

(w) > throw c- V. be linear .

Then there exists an ordered orthonormal basis 13 for V

Pzof . First , assume Tt exists
.

choose an ord orthonorm basis 13=(41-1-14) for V.
such that [ T],

is upper
-triangular.

Then
, for each Vi ,

7- unique cii . . . - fine
#-)

Puff - Proceed by induction on a- dim V.

1-
*( ri ) = Giv, -1 - . - + Gnvn for each i.

consider n=l . let 0T-✓£V.

let IT]
,
= ( big. ) .

Then we also know
get w= ¥, ,

so
that 11Wh =L , and so B=lw) is an

ord orthonorm basis for
V -

Tlvj )
= by.V, -1 . . . + bmvn for each j .

Since [T], is 1×1
,

it is trivially upper triangular .
As ctcvj ) , ri > = cvj . T*C✓i ) > , thus

Now, assume claim is true for all V with dim V=n
,

< Tcvjl , vi > = < bijv, -1 . . - + bnjvnivi >
= by.< Yivi > + - i - + bnjcvniri > = bij ;

and choose ✓ 7 dim Venti & choose some linen
and

T: ✓ →V.< vj, T%✓i
) > =

cvj , Giv, -1 . . - + cnivn ? = CIcvj.ir, > + . . . + cniavj.vn> =
-

consider Cct ) for T*. As cct ) c- Panic) , this by fund

Hence
bij = Vij , and so [T"]

,
is the conjugate transpose of Theorem of Aig cct ) has 7

,
I complex root c

,

which is an

IT]Bi ie I -1*3
,
= [T ]É . eigenvalue of 1-

*

by def
" '

This proves uniqueness of TI once we prove
it exists

. go
,
we can choose an

associated eigenvector Vntitv +

Then
, we know 7- unique T*:V→V → T*(vn+ , ) = cvnti .

WLOG
,

as we can divide vn+, by its norm
,

we

may
assume

T*Cvj ) = .
bjivi thejen.

By the alone
, [ T

' ]
,
= IT]B*

.

that Hun-1111=1 -

let W= span ivnt,} .
As n+l=dimV= dimw + dim wt = I tdimw!

By LIZ. -1 ,

< Tcu) , w> = Ew]É[Tcu)]B
so dim W

-1
= n -

= [w]B* ET ]Bt☐B .

Now , we claim W
-1

is
' '

fixed under T
"

; ie thew
,

Tcxltwt .

& *

let ✗ c- w
-1
.

We want to show TCX) c- Wi
,
ie

Cv, (w) > = ( TEW)] , Ev]B

= ( [ 1-
*

IBEW]B)
*

EV]B
< aunt , ,

-11×17=0 Hae #'

= [w]
,; [ T ]B[v3, ( = < Tcu / ' w> ) ' Then see that

as needed
.

< aunt , , Tex
, > = < TEN

,
✗ >

( by oY= of T
"

*

[1-* 3,3 = [T], (1-15.112)) = < aT*cvn+ ,
)
,
✗ >

"
let T :v→v be linear

,
and let B be an ordered orthonormal

=
< acvnt , i ✗ >

basis for V
'

= accvntiix>

Then necessarily = a. ( o)
( as vn+ , & ✗ one ortho)

*

[ -1*3,3 = IT] ,
-

= 0
,

Pyg . This was pwned in the proof for T 'S ' " " .
as needed .

Hence
,
if we only apply the linear transformation T to the vectors in

cattbv)*= a- 1-
*
+ b- U* (1-15.113))

wt
,
we obtain a

" restriction map
"

T /
w
,
: wt → w -1

.

- "
let T, U : ✓→V be linear .

As dim W# n
, by IH 7- ord urthonorm basis C=(vii. . . , Vn )

Then necessarily
( aT+bu)*= a- 1-

*
+ b- U* " BEF . 7 [Tlwic is upper triangular .

Pw_of. Follows by oef
? of T! ☒

since ✓ny , is ortho to any
vector in W? this B=( V1 ' " ' '" '"" >

(UT>
*
= 1-

*U*
; (7)

*
= T (1-15-113)) is orthogonal , and in fact orthonormal (as 114+111=1 )

.

'

let T, u
:V→V be linear . So B = Cv

, , . . . ,
until is an ord orthonorm basis for V1 and

Then necessarily indeed
,

no matter what TCvn+,) is
,
IT]
, is upper triangular .

① CUT )* = T*U* ; and

② (T*)*= T.

Perf . Filoni hy ay? of T* . ☒



A- c-Mn×n(E) ⇒ 7- UNITARY MATRIX Pemnxnli)
,

AeMn×n(a) IS UNITARY ⇒ A IS UNITARILY

DIAGONALIZABLE (1-15.5)UPPER-TRIANGULAR MATRIX UEMn×n(G) -3 U =p
-'
AP

'

"

let Aemnxncci) be unitary .
CC SCHUR'S THEOREM I>> (1-15.2 (2))

Then necessarily A is unitarily diagonalizable .

- :
let Aemnxnccl) . PIOF . By TIS -212)

,

7- unitary Pemnxni) & upper
-tri UEMnxr.la) -3

Then there necessarily exists a unitary matrix PEMn×n( E) ✓ =p
- '
Ap = p*Ap

.

and
upper

- triangular matrix Uemnxnt) such that
As A is unitary , thus

✓ =p
-'
AP . Ut = ( p*Ap)*= P*A*lP*)*

ppgf . By -113 -2cL )
,

Ta : É→c^ is upper
- triangular'tahki =p

-in-Ip

= ( P
- lap )

- '

ie -7 urthonorm ord basis B for an 7 [Ta]p is

= v1
,

upper triangular . so U is also unitary .
Then -1 since u is upper

- triangular, thus U* is lower -triangular -

ETA] , = ( {Ian]☐) [ TA ]ss[IÉB / But as u is upper
-triangular & invertible, thus U

"

is also

where S is the standard ord basis to ¢?

upper triangular .
Now, the columns of sEIen]B one given 4

the standard

since u
#
= u

-1
,

thus ✓
*
& V
"
must be diagonal -

coordinates of the vectors in B , which is an orthonormal basis
,

so u is diagonal as well
,

and the proof follows
.

so by 114.1 P=sEI¢n]B is unitary .

NORMAL [MATRICES] (1315-1)
Since U= [Ta] , is upper

- triangular & TTA ]s=A ,

hence

- "
let Aemnxnllf ) -

u =p
- 'AP

, as needed . ☒
Then

,
we say

A is
"

normal
"

if

A- c-Mn×n(IR) , ALL EIGENVALUES OF A ARE REAL ⇒ A*A = A*A .

-7 ORTHOGONAL MATRIX PE Mn×n(R) & NORMAL [ LINEAR OPERATORS] (1) 15.1)
"
let T:v→V be linear

,
where dim Vcd .

UPPER-TRIANGULAR MATRIX UEMn×n(IR) -3 U =p
-'
AP

Then
, we say T is

"

normal
"

if

CC SCHUR'S THEOREM It 77 (1-15.2 (3))
1- 1-
*
= 1-

*
T .

"
: let AEMn×nllR) , and suppose

all the eigenvalues of A

AEMn×n(E) IS UNITARILY DIAGONALIZABLE ⇒
are real .

Then there necessarily exists an orthogonal matrix PC-mnxr.GR ) A IS NORMAL ( LIS- 1)

and
upper

- triangular matrix UtMn×ncR) such that '

:
let Aemnxncci) , and suppose

A is unitarily diagonal izable.
✓ =p

- '

AP .

Then necessarily A is normal .

Ploof. Similar to proof for -115.2127
. ☒

PW-of.at A be unit diag . so 7- unitary Ptmnxnlc) & diag uc-mnxo.co

Aemnxn( IR) ; A IS ORTHOGONALLY DIAGONALIZABLE →
☐ =p

-lap
,

<⇒ A IS SYMMETRIC (1-15.3) ie

A = PDP
-1
= PDP*

.

I :
let AE Mn×nlR) . We know A*= ( PDP '9*= pD*P*

.

Then A is symmetric iff A is orthogonally diagonal itable .
Note ☐☐

*
=D'D

,
as D. ☐

*
are both diagonal .

So

AA
*
= ( pppt )(PD*p*)PIOF . By 214-2 .

A is orthogonally diagonal Italie ⇒
A is symmetric . = ppcptp)D*p*

So
,
let A be symmetric . By -114-1

,
A only has real

= ppp*p* (as P is unitary)

= PD*DP*
eigenvalues.
so
, by -115.213 ) ,

7- an upper
- triangular matrix U & = ( p☐*p*)cpDP*)

= A*A ,

orthogonal matrix P →
so A is normal as needed . ☒

✓ =p
-
'

AP = PTAP .

AEMn×n(E) IS UNITARILY DIAGONALIZABLE <⇒
Hence

✓ = (pTAp]t= PTAP = U
. A IS NORMAL (-115-6)

So u is upper triangular
and symmetric , and so U is '

:

let Aemnxnccil .

diagonal ! Then A is unitarily diagonal : table iff it is normal .

Hence , as U=pTAP, by oy:
this tells us that

A is

PIF. the above lemma shows ( =)) .

orthogonally diagonal'-table . ☒
Cet A be normal.

By 1-15-2127
,

F- unitary Pfmnxncci) & upper
tri UEMnxr.la) such

AEMn×n(e) IS SELF - ADJOINT ⇒ A IS UNITARILY
that

DIAGONALIZABLE (-115-4)
u =p

- '

Ap = HAP .

' "
let Aemnxnic) be self - adjoint lie A*=A ) .

Then

Then necessarily A is unitarily diagonal#
able -

out = ( p*Ap)cp*Ap)*
= - .

-

P=f . By TIS-2121
,
I unitary Ptmnxncc) & upper

- hi Uemnxnc
= u*,

,

→

U =p
- '

Ap =
P*AP

.

So V is normal .

This
,
we need only show U is diagonal .

So

u*= ( ptap)* = P*AP = V1 As U is
upper

- triangular say

and as U is upper triangular
& self-adjoint , it is hence

✓ = ( ° 422 - -
- Uzn÷:::::÷:)

.diagonal .
Proof follows -

see that

( Ukr ) , ,
= 14,12

,

but

( Ulf)
, ,

= In,, /
'

+ Innit ..
- + Lumi ?

As Utu = ✓
*
u
,
they 14212-1 - -- + lump -_ O

,

ie u ,z= . . - = U ,n=O .

Repeating this argument for each successive now yields

that all entries off the diagonal one 0
,
and so

U is diagonal -



A- c- Mnxnccl) IS NORMAL
,
(c.v7 IS AN EIGENVALUE/

VECTOR OF A ⇒ ( E
, v) IS AN EIGENVALUE/

VECTOR OF A* (215.2)
- "

- let Aemnxnic) be normal
,

and let ✓ c- É be an eigenvector
of A associated with the eigenvalue c.
Then necessarily v is also an eigenvector of A*

associated with the eigenvector c- .

PIof . We wish to show Atv = IV.

As Av=c✓ , so CA -cI)v=0
,

so HLA-cI)vlF=O .

Thus

0 = ( ( A-CI)v, CA-cI)v )

= C v
,
CA -cI)*CA -cI)v >

= < v
,
CA
"
- c- I* / CA -CI )v>

= Cv
,
CA* - c-I )CA - CI)v > .

Then

( A
"
- c-I )CA -cI)= A*A - c-AI - cA*I -1 c-CIZ

= AA* - c- A - cA* + c-c. I Cby normality of A)
= ( A- cI)(A* - II)

= ( A-cI)CA -CI )*.

So

0 = Cv
,

( At - c- I)( A - it)v>

= < v
,

CA - CI)CA-cI)*✓ >

= < ( A-CI)*V, ( A -cI)*v >,

this ( A-cI)*v=o .

In other words , CA
"
- c- I)v=0 , and the

proof follows . ☒

T:V→V IS NORMAL
,
Cc,v ) IS AN EIGENVALUE/VECTOR

OF T ⇒ (E
, v ) IS AN EIGENVALUE / VECTOR OF 1-

*

(LIS -2)
÷
let T : ✓ →V be normal

,
where T is linear & dim VCN.

let v be an eigenvector of T corresponding to the eigenvalue
C.

Then necessarily ✓ is an eigenvector of T* corresponding to the

eigenvalue c- .

PIof . Almost identical to the matrix version . Ty

A- c- Mn×n(E) IS NORMAL , Cc
, /
V
,
) & Ccz,Vz ) ARE EIGENVALUES/

VECTORS OF A
,

C
, _tcz ⇒ V, & v2 ARE ORTHOGONAL

(-115-7)
"
let Aemnxnic) be normal

.

let vi. vz c- É be eigenvectors of A associated with distinct

eigenvalues c
, ,czE¢ .

Then necessarily v,
& v2 are orthogonal .

PnIf . We know CA - c. I)v,=0 - So

0 = ( ( A - C , I)v, , V2
>

= ( AV
, , vz)

- C
,
<v1 /V2>

= Lv
, , A*Vz> - C

,
< vi. Vz)

= <Yiczvz> - C , Cv, , vz) (by 115.2)

= czcv, , V27 - C
,
< V, , V27

= ( Cz -c.)Lv, Nz>

As Etc , ,
this < v.v,> =o,

as needed
. ☒



Class 16:
Introduction to Quadratic Forms
QUADRATIC FORMS (DIGI)

Qcx)=✗TDX; CLASSIFYING Q BASED OFF ENTRIES
A

"

quadratic form
"

is a polynomial function Q: 112^-3112

ON MAIN DIAGONAL (1-16.2)
such that

deg ( clad)
= 2 ✗ER? :

at •a)
= ×Tp× be a diagonal quadratic form , say

D= diag "" "-in) -

More explicitly , we have
Then

,

dcx) = i¥§=,aij✗i✗j , ① If ai > o vision
,

then Q is posiiednitei
where aijc-RV-ieiy.cn & ✗=(n)ER

"
'

② If aizo Kien & aj=o for some lejcn , then Q is

positive semidefinite ;
eg

dcx) = xp -1×1×2 - 2×2×3 -1×32
③ zf-ai.no then Q is negaF i

In particular, ④ If aieov-lei.sn & aj=o for some lejcn , then Q is

a(× ) =
✗TAY

negative semidefinite ; &
where A- = ( %

' : ":?)
.

⑤ If-aig.TO for some leijen , then Q is indefinite .

any - . . Ann

Pnsof . let x=(¥;) . Then @(×)=×TC× ; CLASSIFYING Q BASED OFF ITS

✗Tax = ( ✗i. ✗nil?
"
"

" ?_? )(¥;) EIGENVALUES (-116-3)
any - . . Ann

= ( ×, . . - xn)(
"
"""" + "n") . :

get a :#→ ☒
be a quadratic form , say QCX)=×T× HER"'

'

:

n n
anlx, -1 . .- tannin

where c is symmetric .

= ¥,aij×i×j
By yyy , , , every eigenvalue of C is real

,
and by T's. }

'

= @Cx) . ☒

since C is symmetric ,
thus C is orthogonally diagonal ,

-

2-able .

QCX) IS A QUADRATIC FORM ⇒ 7- UNIQUE

Hence
,
C has n

real eigenvalues , say
I, , . . - in EIR .

SYMMETRIC MATRIX [c-Mn×n(lR) 2 QCX)=ÉC✗ ;
Then

,

C = (Caijtaji) /2) ij (-116-1) ① If a , > o
v. Kien ,

then Q is positivity
"
let acx)= FÉJÉ, aijxixj be a quadratic form

'

② If Rizo Kien and Rj=O for some IEJEN , then Q
is

Then there exists a unique symmetric
matrix ceMn×nC1R)

positive-sense;
such that acx) = xtcx for each ✗ER

"

③ If a , > o
v. Kien ,

then Q is negae§ni¥i
Moreover

,

C is given by
④ If Rizo V- Kien and Rj=0 for some lejcn , then Q

is

Cig
. = (aij+z V-iei.jsn.IE#esemide--nite; &

POSITIVE /NEGATIVE DEFINITE / SEMIDEFINITE ;
⑤ If Rico & Rj> 0 for some IEiy.sn , then

Q is

INDEFINITE CCCLASSIFYING QUADRATIC

indefinite.FORMS >> CDI6.2)

"
let Q:R

"
→ IR be a quadratic form .

Then
,

① we say
Q is

"posiedefinite
"

if QCXIZOV-xc.pt
,

and Q(✗1=0 <⇒ ✗ =o ;

② we say
Q is

"posi-iesemidef.it
"

if QCXIZO their?

but Qcx)=O for some ✗to;

③ we say
Q is

"

negatived
"

if QCXIEO their?

and Qcx)=O <⇒ ✗ =O ;

④ we say Q is
"negaliesemidefite

"

if QQ) to their
"

,

but Qcx)=0 for some ✗ 1=0 ;
and

⑤ we say
Q is

"

indefinite
" if Qcx) >0 for some ✗c- IR?

and QCX) < 0 for some ✗ c- IR?

DIAGONAL QUADRATIC FORM (1316-3)

Cet Q:R^→R be a quadratic form.

"
Then

,
we say

Q is
"

diagonal
"

if it has the

form

a(¥n ) = a ,x ,
-
+ - .

. + anxn
'

for some a
,

- c- IR
,

IEIEN .

'

Equivalently , Q is of the form

Qcx) = XTDX

for some diagonal
matrix 1) c- Mn×nCR) .



Class 17:
Optimising Quadratic Forms
QCX)= XTDX

,
D= diag CR, , . . . ,Rn) ⇒

maxicecx) : 11×11=1} = Max ER, , . . ,Rn};
minidcx) : 11×11=1} = minor, , . . . ,Rn} (1-17.1)
! let a:R^→R be a diagonal quadratic form,

ie Qcx)= ✗TDX for some diagonal matrix

D= diagcil , , . . . ,Rn) ,
where Ri , . . . ,RnER.

Then necessarily

① max iacx) : 11×11=1 } = Max ER , , . . . ,Rn} ; &

② min idlx) : 11×11=1 } = min ER , , . . . . Rn} .

P IS ORTHOGONAL ⇒ 1117×11=11×11 (47-1)

:
let PEMn×nCR) be orthogonal , and let ✗c- Rn .

Then necessarily
1117×11=11×11 .

Qcx)= ✗Tcx, C IS SYMMETRIC ⇒

Max Ickx) : 11×11=1} =
maxER, , . . . , In} :

mini@(x) : 11×11=1}=
min ER, , . . . ,Rn};

Qcx ) MIN ⇒ ✗ IS AN
EV CORRESP To mini,Ri};

acx) MAX =) ✗ IS
AN EV CORRESP TO Max IRI}

(1-17.2)
- "

let Q : → R be a quadratic form ,
with Qcx)=✗Tcx their

"

,

where c is symmetric .

By TIY -
I & -115.3

,

C has n real eigenvalues , say

R
, , .

. - ,
Rn .

Then
,
necessarily

① max Éacx) : 11×11=1 } = maxi.R, , . ..in} ; &

② min i. Qlx) : 11×11=1 } = min ER, , . . .,Rn} .

Additionally ,

dcx) is min <⇒ ✗ is a norm -1 eigenvector
corresponding to the smallest

eigenvalue of C

&

dcx) is Max <⇒ × is a norm -1 eigenvector
corresponding to the largest
eigenvalue of C.

Qcx)= ✗Tcx, C IS SYMMETRIC ⇒

maxi
,
Qcx) : 11×11 -_ r} = r2ma×ÉR, ,

. . .,Rn} ;

mini@(x) : 11×11 __r}=
ramin ER, , . . . ,Rn}

(1-17.3)
"
Cet ce :/12^-7112 be a quadratic form ,

ie dlx)=xTC× V-xc.IR?

where c is a symmetric
matrix .

By TIY -1 & -115.3
,

Q has n
real eigenvalues , say

✗
1 , .

.
.

/
Rn .

Then necessarily
① maxilla) : 11×11 -- r } = rhmaxi.hr . . - in} ; and

② minions : 11×11 __ r } = r 'm in ER" . . . .in}
.


