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Chapter 1:
Introduction to Statistical Science

C #_ SI
,Aslide

chapelrynumber number

-

statistical science is the science of
VARIATES (CIS327

"

empirical studies
"

.

-

" Variates
"

are
characteristics of the units

.

EMPIRICAL STUDY CCI 524)
*
we usually represent these by letters × , y

' "

An
"

empirical study
"

is one where we

& 2- ."

learn by observation and/or experimentation . CONTINUOUS VARIATES (CIS33)
"

z
Note these involve unty - repeated - "

continuous variates
"

are those that can be measured

experiments generate diff
results .

( at least theoretically) to an infinite degree of

But we model these uncertainties using probability
accuracy .

models . eg height , weight , lifetime of a fuse , et

UNIT CCISZS )
DISCRETE VARIATES (CIS33)

' "

A
"

unit
"

is an individual which we can

' '

Discrete variates
"

are those that can only take

take measurements) .

finitely or b1y many
values .

POPULATION CCISZG)
"

A
"

population
"

is a collection of units .
eg # of car accidents on a certain stretch of

eg
- an current UW undergrad

students

highway /yr, etc .

- all donuts in Tim Hortons right
now

Note that depending on how we measure a

*
note : we need to be precise

when defining populations,
continuous variate

,
it may

become discrete .

or any
other terms !

eg if we said
"

all UW students
" this is ambiguous'

eg if we measure weight w/ a scale that

since it might include grads.
alumni ' et'

only goes
to 2dp , the resulting variate is

PROCESS CCI 527) discrete !

-

A
"

process
"

is a system by which units are produced .

"

Ultimately the distinction affects
1

eg
-
hits on a particular website

are units in a process ① our assumptions of the
data : and

- claims made by insurance policy
holders are

② the probability models we use-

units in a process • for discrete variates
,
we visually use discrete

-

z

Note that although populations & processes
are collections

prob models ( eg
Poisson )

of units : • for cts variates
,
we visually use cts pwb models

① populations are
"static

"

( defined at one point in time! ceg Gaussian)

• but there are exceptions . (C1 543 )

but

② Processes usually occurover-t.me . CATEGORICAL VARIATES (CIS35)
' "

"

categorical
variates

"

are those where the

units fall into non - numeric categories . without

any implied order .

eg hair color , university program

ORDINAL VARIATES (CIS 35)
-

'

"

Ordinal variates
"

are those where an ordering

is implied , but not necessarily from a

numeric measure .

eg strongly disagree , . .
.

.
strongly agree ;

small , medium , large ;

etc

COMPLEX VARIATES CCI537)

" "

complex variates
"

are those that are

"

more unusual , and don't fail neatly into

the other variate types .

eg open-ended responses
to a survey question

-

z

We usually need processing to convert these into

one of the other types .

eg text processing to convert a tweet 's content

into
"

positive
"

,

"

negative
"

or

"

neutral
"



ATTRIBUTES [OF A POPULATION/PROCESS] (Clsyg)

'
"

Attributes
"

of a population / process
are

functions of a variate which is defined for

all units in said population /process
.

eg ( STAT 231 asmts) - mean # of completed
asmts
-

prop - of asmts subbed

in last 24 hrs

( UW Humane Society) - prop
. of dogs

that arrive

in good
health

- mean # of owners of dogs
in their care

TYPES OF EMPIRICAL STUDIES (CIS50)
SAMPLE SURVEY (CIS52)
"
A
"

sample survey
"

is where information is

obtained about a finite population by

① selecting a

"

representative
"

sample of

units from the population : and

② determining the variates of interest for

each unit in the sample .

eg - poll to predict who will win an election

-

survey of potential consumers to compare

products & state their preference

leg coke vs Pepsi )

OBSERVATIONAL STUDY (CIS -53)

An
" observational study

"

is where information
about a population / process is collected without

any change to the sampled units
'

variates
.

eg
a study of blood alcohol levels for

students at a 8:30am Mon lecture

É÷÷i"É÷i① P-opn-ofinterest.is
infinite / conceptual

ONI
over time

more
"

aggressive
"

③ More passive ( sit and¥.÷÷:÷:÷÷.it#::::::::::::::::::=-........see )

EXPERIMENTAL STUDY CCI 554 )
-

An
"

experimental study
"

is one where the experimenter
intervenes and modifies some of the variates for

the units in a study .

eg same example as above
,
but some students are

warned beforehand , whereas some are not
.



DATA SUMMARIES (CIS56)
MEASURES OF VARIABILITY/'

These are used for

① the estimation of attributes : and

DISPERSION (C.1567)
② checking fit for

a model .
" "
measures of variability

"

convey
how

"

spread out
"

MEASURES OF CENTRAL TENDENCY/ the data is .

ROBUST [MEASURE ] ( ( 1580)LOCATION (CIS58)
"
we say a measure is

"

robust
"

if it is not
"
we usually represent our data using the

1
( significantly) affected by extreme values

.

notation icy , , . . . . yn}, where each yieR and

eg IQR is robust
, range is not

"

n

"

is called the
"

sample size
"

.

SAMPLE VARIANCE & STANDARD DEVIATION :
We also use lower-case- for constants ,

s? s (ciS69 )and upper- for random variables .

'

We define the
"

sample variance
"

,
denoted

"

S2
"

.

ORDERED SAMPLE / ORDER STATISTICS ( ( 1559)
of the data i. y , . . . . , yn }

to be
'

We call the
"

ordered sample
"

or
' '

order statistics
' '

n
n

of the data to be s
'

:=÷§cy ; -55 = [¥
,

's? - ^5]
.

The
"

sample standard deviation
"

,
denoted

"

S
"

.Y (c) i • ' -

, Yen ) -
is just the

square root of the sample variance
.where

y , , ,
E. . - E yen , , Yo ,,=min&Y, , . . .in } &

"

68-95
"

RULE FOR GAUSSIAN ESTIMATIONYen, = max Ey , , . . . ,yn} .
(CIS70)

SAMPLE MEAN/AVERAGE : g- (CIS-58) "
suppose

the data icy ; } is from a Gaussian distribution
'

The
"

sample mean

"

,

denoted by
"

5
"

, is
GCJ , s ) .

* aqu.ir) = Nye,o7

equal to
n Then necessarilyWÉ+=¥i ① Ggy. of the sample lies in [5-s. 5+51 :

and*
the keyword

"

sample
"

is important ! ② 95.1. of the sample lies in [5-2s. g- +2s] .

SAMPLE MEDIAN : Ñ (CIS 59 ) *
this can be verified in R using the code

-

The
"

sample median
"

,
denoted as

"

ni
"

,
is > pnormci) - pnorml

-1 )

defined by > pnormcz) - pnormc-2 )

m^:= { %^¥ ) '
n is odd

RANGE (CIS73)
'

The
"

range
"

is defined as|ECYn⇒+y(z+,p.ni
"

Note that range
= yen,

-

ya, .

2 *
the range is very susceptible to outliers !

① In symmetrical distributions
, g- I m^ ;

QUANTILES & PERCENTILES (( 1574)but

② In skewed distributions
, J # Ñ (there -s The

"

pth quartile
"

,

also called the
"

( loop)
"

percentile
"

,

may be a significant gap between them )
. (CIS 66 ) is the value such that a fraction p of the

data fall at or below said value .

SAMPLE MODE CCISGI)
* the median is the 05th quartile / 50th percentile .

'

The
' '

sample mode
"

is just the most common

" In other words
,

the pth quartile of a
distribution

values) in a set of data .

is the value q
such that

"z In this case
,

the
"

sample modal class
"

is the

group /class with the highest frequency .

P= f- (g) dy .
area :

¥
quartile

We can calculate quartiles in R using the

code

> quantile ( ccy , ,
. . . ,yn) , p)

QUARTILES : 910.251, ni , qco-75) ( ( 1579)

The
' '

lower quartile
"

,
or

"

first quartile
"

,
denoted

by qco-251 , is the 25th percentile .

The
"

upper quartile
"

,
or

"

third quartile
"

,
denoted

by qco-751 , is the 75th percentile .

3 The
"

second quartile
"

is just the median m^
.

INTERQUARTILE RANGE / IQR (C1 580)
:
The

"

interquartile range
"

is defined as

IQR = qco-75 )
- qco -25 ) .

*
IQR is robust - it is not affected by extreme values

.

*

if considering discrete data
,
the interpretation of IQRS can

vary depending whether we consider the
"

interval
"

from Eco -251 to

90.75) to be open , semi - open or closed .



MEASURES OF SHAPE ((1584) ASSUMING A MODEL IS GAUSSIAN CCISIOZ)

SAMPLE SKEWNESS ((1588 ) '

To assume data can be reasonably modelled by a

- "

sample skewness
"

measures the asymmetry of Gaussian distribution , we must have the following :
"

the data
,
and is equal to ① The sample mean & median should be approximately

equal ;|sampleshewness=[z¥÷¥.i ② The sample skewness should be close to ° :

③ The sample kurtosis should be close to 3 : and

④ ~ 95% of the observations should lie in the interval

Interpretation of sample skewness 's value :

① If ss = o ⇒ distribution is symmetric i [g- - 2s , g- +2s ] .

eg Gaussian
,
uniform IN STATISTICS

,
WE DON'T PROVE THINGS !

(C. 15103 )tr '

In statistics
,

we doritpwve assumptions are true
,

② If ss > 0 ⇒ distribution is posi-ieysewe.cl/ but instead find evidence against an assumption -

① If there is suffiaent evidence against
the assumption ,

then

The data has a long

""Y+µn+w .

we say the data is "

not consistent
"

with said

assumption .

② Otherwise
,

we say
the data is

"

consistent
"

with the

assumption .
③ If ssco ⇒ distribution is IeÉÉd/ FIVE NUMBER SUMMARY (CIS 108)

'

The
"

five number summary
"

for a set of data is

sheYt0+hne
data has a 10^9 "

① The minimum value ye , , i

left tail .
② qco-25 ) ;

③ qco .
-5 ) ;

④ qco-75 )
: &

⑤ The maximum value yen,
-

In R
,

we can find the five number summary via

SAMPLE KURTOSIS ((1596)
'

"

sample kurtosis
"

measures whether data is concentrated the code

in the central
"

peak
"

or in the tails
,
and is |>summaryf

calculated by

nt-E.ly ; -j )
"

sample kurtosis =

§,yiy] .

'

Interpretation of sample kurtosis
'

value :

① sk =3 ⇒ distribution looks

"

Gaussian
"

( bell-shaped ) ;

② Skc 3 ⇒ distribution has ¥::÷shorterta (more concentrated dist? )

in the peak )

③ sk > 3 ⇒ distribution has

longerta ( less concentrated in k- 4.2

the peak)



GRAPHICAL SUMMARIES
(CIS 112) Box-PLOT (CIS 139 )
-

when displaying graphs , note that
.

"

Box - plots
"

give a graphical summary of the

① All graphs should be displayed at an

shape of a dataset 's distribution in a similar

appropriate size ; way to the five
number summary .

✗
-
outliers

② Graphics should have clear titles which are

fairly self-explanatory ;
- - --- - qco-75)

③ Axes should be labelled & "" its 9
"" where

"

, -

?_?
" """"

appropriate ; :-. ---
--- qco.is)

/ qco-25) - I -5. IQR
④ choice of scales should be made with care;

and I
'

* ⑤ Graphics
should It be used without thought '

z
Box - plots can also show the skewness of a

especially if there are better ways of displaying distribution :

the information - ✗

/÷:HISTOGRAMS cc's""

"

/ I"÷-
"

| , ""

"

| f.ge.Essentially , histograms
create a graphical summary of ,

our data that we can use to compare
with a ; ÷

✗ ✗ left
pdf for cries

,
or a pmf for

a drv -
×
✗ tail
×

✗

✗

:
let our data be y, , . . - , yn -

v ¥

2
partition the range of the y 's into K non - symmetric positive skew

negative skew

overlapping intervals RUN CHART ((15154)

Ij = [aj - i.
a;) , j

--1,2 , . . . ,k .

"
A

"

run - chart
"

gives a graphical summary of data

let fj = # of values from Ey , , . . . , yn } in Ij .
which are varying over time .

The fj's
are called the

"

observed frequencies
"

.

Then
,
draw a rectangle above each of the

intervals with height proportional to the

observed / relative frequency .

→ height __ g.fi/g?-.,

observed frequency relative frequency
( standard histogram) ( rel . freq . histogram)

EMPIRICAL CDF ((15124)
-

An
' '

empirical cdf
"

lets us compare the

distribution of a dataset with a calf

of a random variable .

Mathematically ,
the empirical cdf is defined

by

ftp.#ofvaluesinEynn....Yn3w-hihare-yyye,pfg



SCATTERPLOTS (CIS157) BIVARIATE CATEGORICAL DATA

BIVARIATE VS UNIVARIATE DATA ((15157) (C15172)
-
"
:
"

Bivariate data
"

is of the form 's
we use the following survey as motivation :

"

Ecx,,y,),...,(×niYn)}& ① Hometown in Canada
,
like hockey

where ✗ i. Yi
ER i '

② Hometown not in Canada
,
like hockey

É.
z
In contrast

,

" univariate data
"
is of

③ Hometown in Canada
,

dislike hockey

µ, g.mn

"

ygy.m.ywnn.yinganaaa.aigy.n.no#Iy,....,Y@
'

Sample results from that survey :
for Yi EIR .

SCATTER- PLOT (CIS
158)

' :
A

"

scatter - plot
' '

for bivariate data is simply
g,i:Y÷y÷::==143 65

a plot of the ( ✗ i. Yi ' 's - Hockey ✗ 22

yn

✗

✗
✗

✗

✗

✗ × RELATIVE RISK (CIS 176)
✗

✗

✗
✗

×

- :
Let AEX & BEY be events in bivariate data

"

✗ ✗ Y
"

.

✗

Then the
"

relative risk
"

of
"

A with B
"

is equal¥÷
.

✗

to

SAMPLE CORRELATION
: r (CIS 162) reiaweisu=¥I%i .-

The
"

sample correlation
"

,
denoted

"

r

"

. gives us

"

a numerical summary of a bivariate dataset.

eg in the survey above
,

For data icx , ,y , ) . . . . .
( ✗ ncyn ) } ,

prop . of
Canada hometown who like

relative risk of liking hockey

amongthoe w/ a Canadian =
hockey-r=v¥€j=¥÷¥¥ hometown
pwprofnoneanaaa

hometown who

dislike hockey

(33/55)
=

Taiz,
In particular , re E- 1,1]

,
and measures the linear

= 3- 467

relationship between ✗ &
y .

✗ I
"
"

① If rñ -1
,

we say there is a

"

strong negative linear relationship
" ÷g

between the two variates .

② If ra -11
,

we say there is a

"

strong positive linear relationship
" ^|¥E-

between the two variates .

*
Irl =L does It imply a causal

relationship (correlation does not imply

causation ! )

③ If RIO
,

we say
there is

"
no

linear relationship
" between the

two variates.

*
rao does not imply ✗ & y are unrelated -

it just implies they are not linearly correlated .

Here r=o

e) ^

but obviously the data is

1
"

✗
✗ related quadratically -

✗

"

RESPONSE & EXPLANATORY VARIATES (( 15171 )

:
In an experiment , the

"

explanatory variate
"

is the

variate that attempts
to explain / determine

the

distribution of the
"

response
variate

"

.

*

explanatory variate =

"

independent
"

variable

response variate =

"

dependent
" variable .



DATA ANALYSIS & STATISTICAL INFERENCE
((15182)
DESCRIPTIVE STATISTICS (CIS183)
' " "

Descriptive
statistics

"

is the portrayal of
data ( or

parts of it )
in numerical & graphical ways

.

*
all our previous

work falls under this category
!

STATISTICAL INFERENCE (CIS184)
- ' '

statistical inference
"

is the process of drawing

general conclusions for a population / process

based off of data obtained in a study

about said population /process
.

eg
"

based off my sample , I expect 90% of asmts this

term to be submitted within the final 24 hrs

of the deadline
"

INDUCTIVE V5 DEDUCTIVE REASONING (CIS 185)
- "

Inductive reasoning
"

occurs when we reason from

the
"

specific
"

(observed data about a sample )
to

the
"

general
"

( the target population /process
)
.

In contrast
,

"

deductive reasoning
"

occurs when we

use general results to prove
theorems .

*

proof by induction = deductive reasoning !

ESTIMATION PROBLEMS (C1 5187)
'

! In
"

estimation problems! we are concerned about

estimating one or more attributes of a

population /process.

eg - estimate the prop . of
STAT 231 students

who like poutine
-

"

fitting
"

a probability distribution for a

process .

HYPOTHESIS TESTING PROBLEMS 615188)
-

In a

"

hypothesis testing problem
"

,
we use the

data to assess the truth of some question/

hypothesis .

eg is it true a higher proportion of
math

majors than CS majors
like poutine ?

PREDICTION PROBLEMS (CIS 189)
'

'

In a

"

prediction problem
"

,
we use the data

to predict a futurevalueofavan.at# for

a unit to be selected from the population /process.

eg given the past performance of a stock /other data .

predict the value of the stock at some point in

the future .



Chapter 2:
Statistical Models and Maximum 
Likelihood Estimation
STATISTICAL MODELS ( C.25191 )
"

A
"

statistical model
"

is a mathematical model

'

that incorporates probability .

'

z
These are useful since they can describe

many different processes .

eg - the daily closing
value of CAD

- when catastrophic events occur

leg pandemics )
- the effect of drinking

alcohol on

your
health

We use random variables to represent a=3
variate / characteristic of a randomlyselected
unit from the population /process .

eg
let Y= how long

I need to wait for

the next game
on an online

video
game .

it
"

=L
,
statistical models can also be used to quantify

any uncertainties obtained when drawing
conclusions

from data .

eg
how the observed mean / variance of data

differs from the actual mean /variance of data

leg goals scored in hockey )

In particular, we can formulate questions of interest

as parameters of the statistical model .

eg
In the last example , say

✗ = # of hockey goals in a particular game

and
suppose

✗ ~ Polo) .

We can then estimate 0 ( ie the mean # of goals

scored)
.

-

=G
We can then make decisions based on the results

of our models
,
and use computers to simulate

the processes
.



CHOOSING A PROBABILITY MODEL (C2 5198)
'

When choosing a probability model
.
we use some STEPS IN CHOOSING A MODEL

or all of the following :

((25208)
① Background knowledge / assumptions about the

"

Suppose we have an experiment which involves

pipÉÉ certain '

collecting data to increase knowledge about a

distributions ; certain phenomena
or to answer questions

about

② past experience with data sets from the
a phenomena that has been carefully designed -

populations which show certain distributions

To choose a model for this experiment, we

are suitable ;
use the following steps :

③ Mathematical convenience ( ie the tradeoff
① collect / examine the data : *

more about

between complexity
& accuracy ) :

° '

this in

② Propose a model ;

chap 3 .④ A current data set which the model can be
eg age ,o )

assessed . ③ Fit the model :

i '

eg find Ñ ,

É
ALL MODELS ARE WRONG

,
BUT SOME

④ Check the model ;
ARE USEFUL

' '

((25199)
⑤ If required , propose

a revised model and

"
Note that nostatisticalmodeliseverperfect ,

return to ② ;

but that does It mean we cannot learn

⑥ Lastly , draw conclusions using
the chosen

anything from imperfect ones .

model & the observed data .

( Quote from John Box)

FAMILIES OF PROBABILITY DISTRIBUTIONS

((25200)
'

Recall the following probability
distributions :

① Poisson ( O)

② Exponential
( O )

*
"

O
"

= me=an
of the

distribution

( not ¥)
.

③ Binomial Cn ,O )

④ Gaussian ( O ) = Gaussian (µ ,
0 )

⑤ Multinomial ( n , Oi , . . . . On )

⑥ Geometric ( O )

Y IS PARAMETERIZED BY 0 : fly :O )
( (25205)
"

In particular, for each
"

family
"

of distributions ,

we get a different model for each value of

0 .

'

Thus
,

we say
the random variable is

"

parameterized
"

2

by 0 .

If the r.v.
is Y

, we write the pflpdf of

Y as

fly;D ) for yeA= range
(4)

to emphasize
the dependence of the

model on 0 -

ESTIMATION OF UNKNOWN PARAMETERS

(C25206 )
'

To determine how well the model fits the

data
, we need a value of 0 obtained

fromthedata.io:

z
We usually denote this value ②

.

*
don't confuse 0 & ② !

° O = the underlying
"

true
"

value

• of = our own estimate

This process
is referred to as

"

estimating
"

the value of O '



MAXIMUM LIKELIHOOD ESTIMATION ¢25210)
POINT ESTIMATE [OF A PARAMETER ] : ② RELATIVE LIKELIHOOD FUNCTION : RCO)

(CIS215) ( (25234)
-

'

A
"

point estimate
"

of a parameter, say
O

'

let @ be the MCE of 40 ) .

is the value of a function of the observed
Then

,
the

" relative likelihood function
"

is

data
y

and the other known quantities
leg the sample site n )

. R(O)={forOE'

We denote this estimate by
" E "

,
where

[ Note that§ = ② Cy) .

* note ② is a function on y ,
and so

£ ① Of RCO) El ;

defends on the value of y cthe observed ② LCE ) is a constant ;
and

③ R( 0^1=1
,

and so R is maximized at 0=0^1
data) .

For example : RELATIVE LIKELIHOOD FOR BINOMIAL DATA :

① a(µo) : estimate µ by Ñ=÷ÉYi Oye , - g)
n -y

RCO)=-Cthe sample mean )

gy , ,, @yay
,

② = ¥ ( (25235)

② Bincn ,o) : estimate 0 by É=¥
"

For binomial data
,
necessarily

(the sample proportion)

PARAMETER SPACE : I

Rioi=•÷%:,o^-#The
"

parameter space
"

r of a parameter
0

is the set of all possible values 0 can

why ? → Leo)=(F) 09C , -01^-9
take .

"

= "oY( ,-g)
n -y

.

*
when computing

LIKELIHOOD FUNCTION [FOR DRV ] relative likelihoods .

Then LCE ) : gyu-o ,n
-

y
.

we can ignore any

[(O) ((25224) constants wrt 0 as they

- :
let y be potential data that will be used (② =L from earlier) will cancel out in the

computation of RCO)

to estimate 0
,
and let y

be the actual ⇒ Rio)=%÷, =g%%_y .

observed data .
LOG LIKELIHOOD FUNCTION : ICO)

suppose Y is a
drv .
=

((25237)
Then

,

the
"

likelihood function for O
"

is

"
-

The
"

log likelihood function
"

is defined to be

defined to be 1

lCO)=logLCO)VOE#
*

log __ In for this|LCo)=LCO;y)=PCY=y;O)forOeff course !
'

z
Note that eco) is maximized for the samewhereristheparametersptof.tl
value of 0 as the regular

likelihood function .

*
L is technically a function of 0 & y ,

but for

*

ie L'(d) =o <⇒ e' (0^7=0 .

brevity we usually just write 40 ) .
'

3
eco ) is also preferred over LCO ) because it is

MAXIMUM LIKELIHOOD ESTIMATE / m-1 .

usually easier to take derivatives of l Cwhich

ESTIMATE : @ (C-25225)
typically involves sums ) over L ( which typically

The
"

maximum likelihood ( ie m - 1.) estimate
"

for
involves products ) .

-

given data
y

is the value of 0 which
-

maximizes LCO)
,

and we denote it by É .

4
However

,
note lco) has a different

"

shape
"

In particular, generally
£ satisfies than LCO) ( it looks more

"

quadratic
"

) .

eg LCO ) _- O'
☐

(1-0)
's

l%÷l•=•T_
Why? - most distributions look like Leo )

with a single
"

max
"

peak µo ,

- so the only place the derivative LALwill be 0 is at the peak , which

we want .



LIKELIHOOD FUNCTION FOR INDEPENDENT

EXPERIMENTS ( (25244 )

Suppose we observe data Y=( Y , , . . . ,Yn) that are iid_

each with p.f.PE?---yiiO ) .

Then the (combined ) likelihood function for 0 based

on the data Cy , , . . . ,yn)
is

Lco)=_Lico)=_P(Yi=yiiO)Voe_i=l
i=l

RELATIVE LIKELIHOOD FOR POISSON DATA :

on5e- no
RCO) =- @ =] ((25254)Ensino .

' "

For Poisson data
,
necessarily

0^5 ,
-
no

Rco)=Y÷=¥=J]
Pioof First , see that

PCYi=yi :o) =°}.° .

Therefore

t.co)=ÑPcyi=y ; :o) =Ñ°%e
i= ,

i= ,

=FI÷.FI?o'iF.Ie-0
"

=

"

@

ÉTYI
e-
no (we ditch

the

constant)

= 0^55^0 c. :g=÷Iy :)
and so -

ILO) = log LCO) = njlogco) - no .

Thus
n5

e' (O ) =
g-

- n 1=0)

and so
e (and thus L) is maximized when 0--51=0^1 .

Therefore onJe - no
RCO )=

( (E)
=

,

8=5 .
☒

RANDOM SAMPLE : Y, , . . ., Yn (
c-25256 )

" "

suppose Y
, , .

. .

,
Yn are iid with p.f p(Y=y:O)

= fly:O) .

We call Yi , . . - , Yn a

"

random sample
"

.

LIKELIHOOD FUNCTION FOR A RANDOM SAMPLE

( (25257)
"

let Yi , . . - , Yn be a random sample , with p.f.PL#y;O)=fCy :O) .

let y , ,
. . -

, yn
be a

realization of Cie the observed data from)

the random sample .

Then the likelihood function for 0 based on the observed

sample is

Lco)=-P(Yi=yi:o)V-oei=l

PW-of.co)= p( observing the data y , , . . . , yn given
0 )

= PCY , =y , , . . .

, Yn=yn :O)

= PCY,
-

- y , :O)
- . . p(Yn=yn;o)

( by independence)

= IT PCYi=yi :O) .

i=l



LIKELIHOOD FOR CONTINUOUS RANDOM VARIABLES

((25258) INVARIANCE PROPERTY OF MLES

LIKELIHOOD FUNCTION FOR CRV ((25272)

Let É be the MCE of a parameter
( (25262)

o .

- "

let Y=CY, , . . .,Yn) be a random sample from a

Then gcf ) is necessarily the MCE

continuous distribution with pdf fly:o) for
of gco) .

OER -

eg suppose Ynpoico ) , 8=3 .

*
in R

,
we

let y=Cy , , . . . ,yn) be a realization of Y .

Then

Pcyz } ) = I - PCYEZ ) = I -ÉÑ calculate this

y=o y ! - via

Then
,
the

"

likelihood function for
°
"

based
"

l - ppoisc 2,31
"

But this is a function of 0 ,

on the observed data y=Cy , ,
. . . ,yn)

is defined to

so the MCE of PCY 2,3 ) is

be
n

, - -28
> e-

£

Lco)=Lco;y)=_f(yi;O)O£h y=oyT .

' "z We should always clarify when / where we use

the invariance property .

MLE FOR Expco) : ② =y- ((25266 )
'

Let Y~ExpCO) , and let Cy , , . . . ,yn)
be the

observed data from a sample of size ^ -

Then the maximum likelihood estimate is necessarily

8=5 .

Pnsef . See that

401 = II. f- e-¥

= o
- ne

- ^5 / o

/

and so

eco) = log LCO ) = - nlogo - ^÷ ( =o )
.

Hence

e' co )=
- F- + ^¥z ( =o )

and it follows e cand so L ) is maximized

when 0--51=0^1 . ☒

LIKELIHOOD FUNCTION FOR G(µ, 0)
:

Leo)= (2-115%0 -^e×p[-÷zÉcy ; -Mi ] (025267 )
i=l

'

let
y , , . . .,yn be observations from Y~aqu.ir ) .

Then necessarily

uol.cz-inko-nexp-L-L-oz-zcyi-m53.IT?=.P-wof.Lco1--iT=fCyi;Mo)

= É✓¥oe×p[-÷cyi -ni]
= car)¥o-^exp[-÷iÉ9i-ui] . ☒

'

In particular, the MLE is

µ=j,o^=['-Eiyi-55]=
Pioof . First ,

see that

eco ) = logclco))
= - ntogo-zo-E.ly; -µ?

Then

se

F=÷5-m & =
+ ÉÉ,4i-m?

This

F. =o⇒i=y &

see

⇒ =o,j=y⇒o=ÉÉyi-ji]±'
☒



CHECKING MODEL FIT ( (2527-6)
COMPARING OBSERVED V5 EXPECTED COMPARING OBSERVED V5 EXPECTED

FREQUENCIES [ FOR DRV] 625277) FREQUENCIES [FOR CRV] (C.25300)
-

To check whether a
model fits a given

set -

we can do something similar for continuous random

of data
,

we can compare
the observed 1

variables
.

frequencies
& the expected frequencies

"""9
eg

consider the dataset

a table . We have

eg Suppose a hockey
team scored the following #

g- = 159.77 ,

of goals in these # of James
:

5=36.36
,

goals 0 I 2 3 " 5 ° 7
5=6.03 .

Cet Y be the

Games 2 17 2 ,
18 15 7 I 1

data .

Let's
say we assume

the data "^
be

How reasonable is

modelled by a Poisson dist ? > Say
Y~P°"" '

it to model the☐data via u

Then , we estimate 0 using
the MCE of 0 '

Gaussian distribution ?

aka 8 ;
suppose it is ; ie Y~acm.cl .

② = g- = £z( 210 ) -117cL) -1 -- - +117 )) = 2.695 .

we estimate
Next

,
we calculate the expected frequencies .

v2 the sample mean
CMLE ) ; &

Since the range of Poi is technically 0>1,2 , . . . ,

02 the sample sd Cnet the MLE )
,

we need to account for the
"

right tail
"

by
so Y~G( 159.77 , 6.03) .

grouping
all the values 37 into

"
one

" value :

we then can estimate the exp
. probabilities Y falls

into one of the intervals of the histogram
outlined

Goals 0 I 2 3 4 5 6 37

above ; eg
obs . z 17 21 18 15 7 1 I

17160 EYE 162 ) = PC "°%%_ a 2- <
'

°2j!? )
EXP - 5.54 14.93 20.11 18 -07 12.17 6-56 2.95 1.67

-2.695 = 0-129
where

e

exp
value for i = nP(Y=i ) = 82" .

*
in R

,
we can calculate this via

> Phorm ( 0.370)
- pnorm

( 0.038 )

'

z
We may

also plot the expected /observed frequencies
on

> pnorm (
162

,
159-77

,
6.031 - pnorm (160,159-77,6-03)

.

via a bar plot .
and thus calculate the

exp . # of values to fat '

within the given
interval :

eg

ej = 351ps . ,
where Ij is the jth interval

,

and compare
this with the observed values

.



QQ / QUANTITY - QUANTITY PLOTS ((25311) USING QQ- PLOTS TO INFER SHAPE OF

'

A
"

ace plot
"

plots the observed values / quartiles DISTRIBUTION ((25341 )

from the sample data on the y-axis over
.

we can use ace- plots to infer the

the theoretical values obtained by fitting a model

underlying shape of a
distribution :

obs or

to said data on
the x-axis -

① If the points are along .
-

-

In particular, we may standardize the theoretical
a straight

line
,
then this

✗guy
,

values and plot
that on the x-axis instead - indicates the data is

expnormal .

② If the data isS-sha-ped.cl
this indicates symmetry lie

low skewness ) .

→ then
,

the relative abundance

of points in the

"

cen-tes.ta.ly

implies
the magnitude of the

ketosis .

low kurtosis , symmetric " leveling out
"°

obs
^

µ
,

✗*✗✗
← ⇒ very

little data

c- in the tails
-

] ⇒ data concentrated

after gyandwdizay.cn .

exp

in the peak
each dot corresponds ⇒ ie low kurtosis

to a quantile ;
high

kurtosis , symmetric
ie the qth quartile .

obs ^

① The y.ua#ue corresponds to
tails

"

| ,
"

←

"

"""""" ^"
"°

the value y
such that

⇒ data concentrated

more in the tails
"

q
"

of the data is Ey .

⇒ ie high
kurtosis

xp② The ×-va corresponds to

the value ✗ such that
③ If the data is U-s '

if we fit the
ru Y to

this indicates asymmetry .

a model
,

and standardize

→ then
,
the relative abundance

said model to be Z , then

of points in the left vs

Plzfx ) = E.

rightly implies Ñmagnit
and sign of the STEWIE .

If we model Y~acu.ch ,
then the QQ -

' positive shew
, asymmetric

plot of the points
✗

⇒ more data towards the

( ☒
- '

)
,
Yei ,
) fr "

" ^
'

°↳|
×

right Cie long right
tail )

where
y , , , , .

. .

, yen,
is the observed data

'

,
,

, ,¥,
"

"

•

⇒ data is shewed to the

should be approximately a straight
line if

right
the normal distribution is a good fit

for

xp
⇒ ie positive skew

said data . negative shew
, asymmetric

⇒ more data towards the

obs ^
-

i

left ( ie long left
tail )

,

-

**

⇒ data is skewed to the

left

⇒ ie negative skew↳
exp

NORMALITY CHECKING SUMMARY ((25344)

To assume data is a good fit for a Gaussian

model
, we need to check :

① The sample mean & median are approximately equal ;

② The sample skewness is close to Oi

③ The sample kurtosis is close to 3 :

④ Approximately 95% of the observations lie in

EJ -2s , J -12s];
⑤ Histograms & ecdfs should show agreement between

the data & theoretical distribution ;

⑥ The QQ -plot should roughly be a straight line .



UNBIASED ESTIMATOR : S2 CC25352) EXAMPLE 2 : Unifca, b) ((25361)
'

The
" unbiased estimator

"

for data is "

problem :

defined to be
"

suppose y , , . . . . yn are independently sampled from5=÷É,C% a continuous uniform distribution on Ca, b) .

What are the method of moments estimates

kth POPULATION MOMENT : MK CC25353) °^ca,b
The

" 4th population moment
"

of Y is defined
5011

.

We need to estimate 2 parameters , so we

to be
require

µu=E[ µ ,= ECYI , µz=
ECYZ)

and hence we need to use

"

2
In particular, m ,=÷§gy; , mz=÷Éy? .

*
remember m

,
& me

i= ,
are bothnumbers

① µ ,
=

E- [ Y] : Then
, using Lotus ,

( since they are based

off the sample ! )
② µ,

= Varcy ) -1
EEY]
'

.

a.=%÷ad, = [ Es !

kth SAMPLE MOMENT: MK (C25355 ) = ICE) (5-a
'
)

& = tzcbta) ,
"

let y , , . . . ,yn
be a sample .

Mz = Jab ¥ady = . . .
= §caZ+b2+ab) .

Then
,
the

" wth sample
moment

"

is defined
we then estimate µ ,=m , Raimi . so that

m ,='zcñFb) ⇒ ^a=2m
,
-To

,to be
&

mz=
'

get -1^5+251 ⇒
CI - m ,5= 3cm

,
-mi)mk=t¥,

using the appropriate subsths .

METHOD OF MOMENTS FOR ESTIMATION solving for E & J yields the estimates

I = m
,
+ N3Cmz-m

((25358)
&

-

The
' '

method of moments
"

allows us to estimate
an = m

,
- ✓3Cmz-m ,

I

parameters for a model
,

based off the data we are

and by evaluating m
,
& mz we

could then compute
a^

using the model for - & I
.

' "

z Steps : moreover ,
note that

① compute the first p sample moments
,

where
mz - mi = n÷s?

and so we could also write the above as

p= # of parameters .
a^=m

,
-✓3(÷Ñ ,

D= m
,
-iV3(¥Ñ

.

② Relate the population
moments to the true

parameter values . EXAMPLE 3 : CONTEST & PRIZES ((25372)

③ use the sample moments to solve the resulting -

problem :

system of equations to estimate the parameters .
"

A contest awards prizes as follows :

EXAMPLE 1 : GCM ,5) (( 25356) - p( win $1 ) = ai

'

Problem : - p( win $10 ) =
bi

- PC lose )
= 1 - a - b .

"

suppose y~ay.g.us.me sample ya, , .,yµ+. y.am#en..ue.anawin+nreetimes.in..uaing"

estima-eµandoÉ one $10 win .

Use mm to estimate a & b.
' '

5011
.

Since Y~GCM.ir) , and

µ = ECY) = µ , . 5011 . Again , we have two parameters , so we need

oh = ECYZ ) - ECY )
"
= Mz -µ ,

"

-

µ ,
__ ECY )

, µz= ECYZ)

we can estimate the values of A & 0 and use the sample moments

by
M
,
= Eyi

,
mz= 'T EYE .

Ñ=m , ,
6^2 =

mz - mi.
Since Y is a drv

,

we use

Hence
n

µ^= m
,
= # Yi Ecyk ) = I yhfcy) ,

c- = , yea
& and for this example
Éh = Mz - m ,

"

A = go, 1,10} , fco)=1 -a -b , f- (1) = a , f-( 10 )=b .

=LEy?) - 5 Hence

M
,
= Ecy) = OCI- a -b) + ( (a) + 10C b) = at lob ;

= ÷iÉcyi -55 ) .

&

Mz = ECYZ) = OÉI-a - b) + Fca) + 102lb ) = atioob .

Note : we use the
"

^
"

rotation for both Then
,
we estimate µ ;

with mi to get

MLE and method of moments !
M

,
= of -1105

, mz=
of -11005

.

Solving for an & I yields that

I = m%
,

of = m
,

- Miami.
Finally , for our sample we observed 40,0 , 1.1.10 } and so

M
,
= 2.4 , Mz = 20-4

and so

a^ = 0.4
,
I = 0.2

. ☒



Chapter 3:
Planning and Conducting 
Empirical Studies
1- Recall "

empirical studies
"

are those where data

collected can be used to learn about a

population / process.

*
we use this

"

Pfizer us . Moderna
"

study for

examples :

so it might be helpful to have the study open
whilst reading this chapter-

PPDAC ((35384)
We can design an empirical study using

"

PPDAC
"

.

"

z
In particular,

this stands for

①P - a clear statement of the study 's

objectives;

② "° "
""" " "

"""
"" "°

data is collected

③ Data - the physical collection of the data

④ Analysis - analysis of said data

⑤ Conclusion - conclusions drawn from said analysis,

and their limitations



PROBLEM ( (35393 )
TYPES OF PROBLEMS ( (35405)

"

The
' '

problem
"

addresses

Types of problems an empirical study can solve :

① what group of things /people
do we want

the conclusions to apply? ①
"

Descriptive
"

- determine a particulate of

② what variates can we define
?

the population .
③ what are the questions

we are trying
to

eg - the national unemployment
rate

answer ? - estimating the relative efficacy of the two

④ what conclusions are we trying to draw ?

vaccines among
all those who received it at the

TARGET POPULATION/ PROCESS (
(35394) time of the study

② "

causative
"

- determine the existence (or lack of )
"

The
"

target population / process
"

is the collection of

of a ⇒ relationship between two variates
.

units to which the experimenters conducting the

eg - does a new hockey helmet reduce the

empirical study wish the conclusions to apply .
risk of concussion

'

In the problem , the units & target population / process
- whether giving

someone the Moderna vaccine

must be defined . instead of the Pfizer vaccine reduces their

eg in the vaccine study , possible target risk of COVID-19

popes /processes
: ③

"

Predictive" - predict the response for a given
unit .

① people in VA health-care system now and

eg - predict e-cig weekly sales if sales tax on

in future them is doubled

② unvaccinated people in the ✓A health "re
- estimating relative efficacy of Pfizer & Moderna

'

system now in the future
z
Note that we usually cannot answer causative

③ ① & ② but limiting
the time period to the

problems from observational studies .

duration of the COVID-19 pandemic .
'

3
Causative & descriptive problems are also hard to

VARIATES [ IN EMPIRICAL STUDIES] ((35398)
distinguish .'

A
"

variate
"

is a characteristic of a unit .

-

'

2
To determine the variates

,
look at what is measured

or recorded on each unit -

eg for the vaccine study ,
the variates include

- which vaccine each participant took;

( ie Pfizer / Modena)

- Outcome indicators such as
COVID-19 infection,

symptoms, hospitalization . and death ;

-

age , sex
,

race
,
residence

, geographic location;

- etc

ATTRIBUTES [IN EMPIRICAL STUDIES] ((35402)
"

Attributes
"

are functions of variates over a

population .
.

' ' '
'

①
z
In the problem step, the questions of interest are

specified in terms of the attributes of the target

population .

eg
in the vaccine study , possible attributes include

① the proportion of people in the target

Pop? who would contract COVID-19 after

receiving the Pfizer vaccine
within 24

weeks ;

② the proportion of people in the target

Pop? who would contract COVID-19 after

receiving the Moderna vaccine
within 24

weeks ;

③ the difference in the preceding two numbers .



PLAN ((35411 )
In the plan , we SAMPLE ERROR ((35435)
① decide what units are

available for
" "

sample error

"

occurs when the aHes in

study ;
1

the Lampi differ from the attributes in the

② what units will be examined ; &

③ what variates will be collected and how .

studypopulah.co#

STUDY POPULATION / PROCESS (
(35411) *

again , it must be a difference in the attributes ,

not just because the two groups differ !

The
"

study population / process
"

is the collection

of units available to be included in the
'

Note sample error does riot care about the

study . target population & sample !
'

"

2
Note the study population is a strict subset

MEASUREMENT ERROR ((35442)
of the target population .

'

: "

Measurement error
"

occurs if the measured

eg
- veterans of age

318 years , no previous

COVID infection , etc ( in vaccine study) and true values of a variate are
not

identical .
STUDY ERROR ((35423)

eg - measuring
blood pressure"

"

study error
"

occurs when the attributes in

"
- patients more stressed in doctor's office

the study population differ from said

- so reading is higher
attributes in the target population .

-

"

white coat hypertension
"

eg say YT~Bincn.at represents the # of

people in a random sample of size n from STEPS IN THE PLAN (C.35445 )

the target pop
? who support

Brexit .
'

flowchart : eg
STAT 231 example ( c. 35447)

say Ys - Bin Cn , Os ) represents the # of

fyargetpopu-o.fi# -
current & future

UW math

faculty undergraduate
students

people in a random sample of size n from

f
study

the study pop
? who support

Brexit .
error

t

we might be concerned 0+1=05 - ( ( 35422) |Studypopulation\
the 1=2018 semester

"" that ""
"e """ ""

" ""
"""°"

→
""""" "

"" " "
" " " "

t
error

being different is riot study error -

permission for responses
to be

the difference must be inth-eiratm.be .
:

used

1
3
Moreover

,
note study error concerns populations ; i.mn#......--D--.::.::::-:::.::....error

we do not care about the study / target samples .

Hence
,

we must be careful when thinking
about

hybrid learning was effective
=

4

the attributes of interest in a study .

=g
In particular , as the values of the target or

study populations
'

attributes are unknown
,

t be quantified .

the study error

-

-6
Instead

,
we generally rely on expertise from

other sources to determine whether conclusions

derived from the study population may apply to

the target population .

eg
whether studies on mice apply to hum .

cstudy )
( target )

SAMPLING PROTOCOL ( (35430)

The
"

sampling protocol
"

is the procedure
used to select a sample of units from

the study population .
'

z
In practice , obtaining a (truly ) random

sample is difficult / impossible /expensive ,

so less rigorous sampling
methods are usually

used .

eg
"

matching
"

in the vaccine study

SAMPLE SIZE ( (35430)

The
' '

sample size
"

is the number of units

sampled from the sampling protocol .



DATA ((35454)
' "

The
"

data
"

step concerns collecting data

"

according to the plan .

'

2
To do this

,
the

① variates must be clearly defined ; &

② satisfactory methods of measuring
them

must be used .

RECORDING DATA ((35455)

Note mistakes can occur in recording data into

a DB
,

and so for more complex investigations
it

is useful to put checks in place
to avoid these

mistakes & detect those that are made .

"

Moreover
,

when lots of data is used
,
database

°

design
and management

is important
.

"

Also
, if data is recorded longitudinally lie over a

3

period of time )
, departures from the plan might occur;

these must be recorded .

eg persons might drop out of a long-term
medical

study because of adverse reactions to a

treatment .

"

4
Such departures

will affect the Analysis
&

Conclusion steps .

ANALYSIS ((35456)
"

In the
"

analysis
"

step , we analyze the data

I
collected .

This includes

① numerical & graphical
summaries of the data ;

② selecting an appropriate
model : &

③ checking if said model is a good fit .

'

3
We usually formulate these questions

in terms of the

model parameters .

eg
"

if Y~Bincn.co ) & O=P( new drug
cures a disease )

,

what is 0 ?
"

'

'

4 Departures from the plan that affect the analysis

must also be noted .

CONCLUSION ((35458)
'

In the
"

conclusion
"

step,
the questions posed

in the problem are answered to the extent

permitted by the data .

"

É" In other words , the conclusion is directed by

2

the problem
-

"

3
The conclusion must also feature

① a discussion and/or quantification of

potential study , sample
& measurement

errors ;

② departures from the plan
that affect

the analysis ;

③ the limitations of the study .



Chapter 4:
Estimation
STATISTICAL MODELS & ESTIMATION ((45463)

"

In choosing a model for the analysis

step of PPDAC we need to consider :

① MIA : a model for variation in the

population / process being studied which

includes the attributes which are to be

estimated ; and

②MB : a model which takes into

account how the data were collected &

which is constructed in conjunction
with

model A.

( see [45466 for more details )

eg
Y = # of R in a randomly chosen sample from

the target pop
? who have had COVID-19

.

For model A , we may
assume

YTBTNTN , OT) ,

where 0-1 = proportion of target pop
? who have had

COVID-19

( not
"

probability person
has COVID

"

! )
=

mm
,

we take into account target &
For model B

study populations are not the same .

We assume

You 13inch,
O )

where O = proportion of study pop ?
who have had

COVID-19 .

*

If 0,1=0 ,

this represents study error .

For this course
,

we assume

① data arises from a
random sample from the

study population;
&

② variates are measured without error .

=3
This only means we are able to estimate

attributes of interest about the study population ,

It the target population
-

*

if we make any inferences
about the target pope,

we have to state our assumptions.



ESTIMATORS & SAMPLING DISTRIBUTIONS

( (45474)
GAUSSIAN SAMPLING DISTRIBUTION

"

Note that sampling
is an inherently

CC45511)
raridom process .

Let Y, , . . . ,Yn~G(µ,o) , so Ñ~G(µFn)
RANDOM VARIABLE ASSOCIATED WITH

( this is the sampling distribution of the sample

g- : I v4
5491)

mean . )

: at y , , . . . ,Yn
be iid .

Then we define "

z vary parameters , and how does it affect the

sampling distribution :'
'

i=÷÷ 9 sample site , n T Std dev
,
0 T mean , µ

In particular , if Yi ~G(N' 0) '
th" locationdoesnotdoesnotmoves-i.tt

change change right

I~G(µ± spread decreases increases
does not

change

ESTIMATOR ((45498) does not does not does not

shape-

An
"

estimator
"

is a rule that tells us

change change change

how to process
the data to obtain an

estimate of an unknown parameter O ' Thus
,
the probability we draw a sample that

yields an estimate µ^ close to 9

POINT ESTIMATORS :
Ñ ((45496)

① increases as n increases :

'

let Y, ,
. . .

,
Yn be potential

observations in

② decreases as 0 increases ; &

a random sample .

③ does not change
with µ .

Consider the point
estimate

*
in particular, because

É=glyn.-- p(1µ~_µs e)
= Pcp- EEÑ

' /
+ E)

Then
,
we can

associate ⑥ with a "^
""

=p (⇒ e z e ¥) ( as Ñ~GCµEn) )
.

Variable
' "

4
Moreover , see that sdc'T) = I

* §=gCYn.-i . rn .

and so

① Sdc'T ) decreases as n increases
,

and so

eg
the random variable associated w/ Ñ=y=EÉii

more of our sample
estimates will be closer

is 8=5--1?ÉYi . to
µ ;

*

⑥ = estimate (single value ) : & ② sd(y- ) increases as it increases , and so less

§ = random
variable !

of our sample estimates will be closer to µ :

SAMPLING DISTRIBUTION [OF AN ③ say , does not change with ju .
Cats -540)

ESTIMATOR] ((45500) NORMAL APPROXIMATIONS ((45525 )
"

The
"

sampling
distribution

"

of an estimator Ñ is
"

If Y
, , . .

. ,Yn are iid with mean µ
& variance

the distribution of Ñ
-

oh
,
then by the

CLT for large enough samples

we have

F-a
= Zn → 60,1) .

"

j Particular examples :

① Binomial - If Y~Bincn.cl ,
then

'

¥÷_~a
② Exponential

- If Yi - Expco) , then for large n

¥÷
③ Poisson - If 035 then if You Poico ) then

Y=aco,r
If Yi ~ Poico) . then for large n



COMPARING ESTIMATORS ((45551)
MEAN SQUARED ERROR /MSE [OF AN ESTIMATOR]

BIAS [OF AN ESTIMATOR] :
CC45562)

Bias TO) ((45553)
; The

"

mean squared error
"

of an estimator

'

The
"

bias
"

of an
estimator É is given by

,

E[cE-BiascÑ)=-co→ '

We prefer
estimators with a smaller MSE .

If the bias is ten , we say
the estimator is

EECÑ-05]=Var(E) + Bias (E)
2

"

unbiased
"

.

EXAMPLE : Y~Bincn.cl.
É= ¥ ((45554) cc BIAS -VARIANCE DECOMPOSITION OF THE

MSE >> ((45570)Problem :

'

Notes :"

suppose
Y~Bincn.co) . Show Ñ= ¥ is

① Large variance & small bias are bothunbiaseÉ
undesirable .

So / 1. Bias (E) =
EÑ) - °

② If the estimator is unbiased, then the MSE is

= EC :-) - O
just the variance .

= d- ECY ) - O
PIof . E- [ (E-of ] = EECÉ - EEÑ] + Eloi) -032

= tncno ) - O = 0
.

#
= ( (g. Ecg ,)2+ zag

-EcÑDCEcÉ) -0 )) -1 ( ECT)
- OF)

EXAMPLE : 82 IN G(µ , 5)
((45555)

= varig, + Bias
+É==Ñ' -0 ))

Problem :
Then

ECCE- ECE)CEcé) -0 )) = ( ECÑ
- ECÑDCECÑ ) - O )
¥t

"

consider Y
, , .

. .

,
Yn iid Glee ,o) .

= 0 ✗ ( ECI) - O )

what is the bias of the ML estimator
, o .

Proof follows. ☒E=tnÉiYi-Y
Sol? Note Bias CÉZ) = ELEY - o?

Ther

EEF] =E.CI?z.CYi--T1Z)--'-nE..&yf-2Yiy---T )
since I __ E. Eyi . thus EYi=nY .

So

EEE
'] = ÷E[§.LY?)-2nY-Y-+nY-2]

= I FÉCY? ) - n'T]

= (FÉEEY? ] - NECIZ ))
Then

, note Varcy) = ECYZ ) - ECY)?

For Y~acp.cl , thus

i. oh = E- ( y
'
) - A2 , & so ECYZ ) =) -102.

Since I - a(µ, Jal , we can show

EcI4= + µ
'

.

Thus

E[EZ] = ±iÉ
,

EEY?] - nE[52])

= É.fi?co2+iI-nlI-+iD--'-n(not-nei-ot-ny2)

= o?

So the bias is

Bias (E) = 1-1-02 - of =
- ÷

which is not zero !

*

the MLE & Mom estimator of the -aviance slightly

underestimates the true variance .

*
note this bias decreases as n increases .



EFFICIENCY CCHS-575 )
SCORE [OF A PARAMETER]: UCOIY ) EXAMPLE : I.(O) OF Exp (O) (

(45589)
((45578) ' Problem :

"

The
"

score
"

of an unknown parameter 0 is

"

the gradient of the log - likelihood function :
"

Cet Y , , . . . ,Yn be iid Expo) ru -

ie FindtheFisherInformati0
UCO;Y)=¥ll• 5011 . Earlier we showed that

2 Notes : ⇒ log Leo :Y)=
-It 'ñiÉYi .

① Uco ; y ) is a randomvar-io.be : Thus

22

②uco.in/)=IologLCOiY)=lF)&tl0t#f-yog-zlugLco;y)=Iz - F. FÉ, Yi .
Since ECY;] = 0

,
this

③ E[ UCO ; -1 ) ; 07=0 .

ICO ) = - E- [ Iz - Iz ,ÉYi 10 ]
EXAMPLE : ECUIO) OF Expo) ((45580)

= - E[Fz - ¥9 ]Problem :

:.Ico)=^"

suppose Y
, , . . .

.
Yn are iid Expo) r.ir .

snowe×pec+edua1ueofthescor Varlet) >É,0 .

' '

CC CRAMER- RAO LOWER BOUND>>
5011 . First , see that

Leo ;y)=Ti£e=o"eiÉ¥ . ( c4S594)
i= '

let § be an unbiased estimator . Then

Thus

eco)= - nlogco) - to ,Éyi . necessarily
Hence VarCÉ)3=
UCO ;Y) = ¥1 - nlogco ) - f- II. Yi ]

MINIMUM - VARIANCE UNBIASED ESTIMATOR
= - I -1£ .ÉYi .

so / MVUE ((45594)
ECU / O ) = EC -10 + £2 ;§Yi ) "

É" A
"

minimum - variance unbiased estimator
"

is Ñ such

=
-I + f-zÉ,EcY:) that

=
-

I -1 'ñÉ=? VarcE)=z=
-

F- + ¥ = 0
,

as expected . EFFICIENCY [OF AN UNBIASED

FISHER INFORMATION [OF A PARAMETER] : ESTIMATOR] : eco) ((45600)
ICO) ((45584) -

The
"

efficiency
"

of an unbiased estimator É of
"

The
"

Fisher Information
"

of an parameter 0

a parameter 0 is

is the variance of its score ; ie

ecñ)=~¥Ico)=E([¥1ogLco;Y)]2
'

"

"

If Vario ) = É, ,
then ecÑ ) =L

,

and in this

2
We can also write

case we
say the estimator is

"

efficient
"

.

ICO)=-E[¥1ogLC0iY)#
PIT . Note that

22
22

⇒ log Leo :-D =T% - ⇐ log LCY :o)]
Then El t.CO:41/uo;yg)--O, and so taking expectations

of both sides
, yields that

ICO/ = - E- [ log LCO ;y ) /
O)

as needed .

Hence
,
the information tells us about the shape

of the log - likelihood .

In turn
,
the shape of eco ) near the maximum

likelihood tells us how many
values of 0

lead to similar values of the log - likelihood

itself .

g If we have iid ru Yi
,
. . . ,Yn , then if

I,CO)=_-[¥10gLCOiY\
then

Ico)=nI



INTERVAL ESTIMATION ((45602)
LIKELIHOOD INTERVAL (C.45614 )

'

A
"

loop -1. likelihood interval
"

for the parameter
0 is the set

iolRco)3
plot on

1 -
-

- - -
-

⇒ loop -1. confidence
interval is

iP|!# [ e. a]
i
1 ! ( ie Elly) . Uly)] ) .
i

'
o

e u

Interpretations : if the data is in a

① 501. likelihood interval → very plausible
② 10% likelihood interval → plausible
③ 51. likelihood interval → implausible
④ 11. likelihood interval → very implausible

"

3
In particular , increasing the sample site n

decreases the width of the likelihood intervals .

→ dist? becomes narrower as n 9

LOG RELATIVE LIKELIHOOD FUNCTION:

rco) ((45627)
'

The
"

log relative likelihood function
"

of 0 is

"

rcO)=logRCO)=lCO)-ecÑ-
To obtain a loop -1. likelihood interval , we

plot rco) and draw a line at

rco)= logcp) .



CONFIDENCE INTERVALS & PIVOTAL

QUANTITIES ((45632) GAUSSIAN DATA 4456733
"
Let Z~GCO.it . Then

,
a loop-1 . confidence interval

COVERAGE PROBABILITIES [OF
for a sample site of n is

INTERVAL ESTIMATORS ] ( (45633 )
"

Let Y=( Y, , . . . . Yn ) be the potential data to (j-a÷,y+aF
be collected . where in R :

; Let [ Lcyl, UCY)] be an

"

interval estimator
"

which
qnorm (

( Hp) /
2)

PCZea)=' →
can be used to construct the possible

values

TWO - SIDED
,
EQUAL - TAILED CIS FOR µ 645674)

0 can take .

Then
,
the

"

coverage probability
"

for the interval
' '

A loop -1 . confidence interval for µ
is of the

form
estimator [( ( y) , ucy)] is equal to

poin-estima-e-1-dis-nbutionquantilexsdcestimatrr.fiPCOE-LCYI.ua/jJ)=PCLCY)EOEUCY#- * note not all CIs are symmetric in general !
'

4
We choose LCYI

,

V14 ) such that
ASYMPTOTIC / APPROXIMATE PIVOTAL QUANTITY
(e4 5682)

① The coverage probability
is large "

&
but these

'

An
"

asymptotic/approximate pivotal quantity
"

is a set

- 0-90
,
0.95

,

0.99

② The interval is as narrow
as possible .
} ""f"" "

of random variables Qn= Only, , . . . ,Yn :O) such that

as n→o
,

the distribution of On ceases to depend
Usually , we fix the coverage probability and

on 0 or other unknown information .
try to find the narrowest interval .

z
These can be used to construct approximate CIS for

CONFIDENCE INTERVAL & COEFFICIENT
0 .

(c4S640)
Example : Bincn , 01 , ⑤ = (( 45686)

n

A
"

loop -1. confidence interval
"

for a parameter :

Problem :

0 is an interval estimate [Ky) , Ucy)] such
"

Let Y - Binln, 01, ⑨ = ¥
.

that Findanappnxima-e95%cIfo
PCOE-t.ly/.Ucy)J)--PCLCY)EOEUCY))--p.&

5017 . By CLT
,

2 p is called the
"

confidence coefficient
"

of the
8-0

~ a' 0.1 ) approximately .

interval
.

"

z
Note that

moreover ,

① 0 is an unknown constant of the population,
In =y¥÷_ ~ Go, ' ) approximately .It a random variable

.

* ② so
, we cgnnngt say

" the probability 0 lies in

Then since

between LCO) & UCO ) is
p
' '

. o.gg = PC -1.96 E Z E 1.96 )

Hence"

y
But

,
we can say we are

"

l-oop-1.com/ident
"

0.95 = PC -1.96 Ew§~¥ c- 1.96 )

that the interval contains the true ( and unknown )
+has

value of 0 .

o.gg = p( g- , .gojoYo EOE Ñ -11.96J )

g
Note greater confidence corresponds to a wider

and so an approximate 95-1. CI is

confidence interval !
§ ± 1.96 ✓ÉY° .

PIVOTAL QUANTITY (
(45652)

INTERVAL ESTIMATION ((45687)
'

A
"

pivotal quantity
" Q= QCY :O) is a

function of the data Y & the unknown
"

ways of finding interval estimates for an

parameter 0 such that the distribution of
unknown parameter :

the random variable Q is completely
""°" '

① use a loopy. likelihood interval :

② Use a loop -1. confidence
interval if an exact

eg
I -a
g-

~ 610,1 )

pivotal quantity exists ; or

→
③ Use a loop -1. appwxima-econf.de#

interval based

the PQ

2
To use a pivotal quantity to construct a on an approximate pivotal quantity

( usually using CLT ) .

confidence interval : * not necessarily
① Determine numbers a. b such that

] symmetric
PCAE QCY;D ) e b) =p : Bet try to find

narrowest interval .
② Re-

express as QCY;D ) Eb in the

form LCYIE Of UCY) ;

③ Then

p= PCLCYIEOEUCY
) ) = Plat QCY:O) Eb ) .

④ For observed data
y ,

the interval Elly) , Uly)]

is a loop % confidence interval for O '



SAMPLE SIZE CALCULATION LIKELIHOOD RATIO STATISTIC : ACO)
((45695) ( (457-16)
'

Suppose we want to estimate 01 the
The

' ' likelihood ratio statistic
"

is defined to

proportion of units in a large population who be

have a specific characteristic, and we pl" nco)=-2log("÷,)=-21og(%¥
to select n units at random . * A is a random variable !

"

"

Suppose we use the loopl.CI ' "

z
For large enough n

,
we can show

÷. ^
j we can specify we want a CI °f LIKELIHOOD BASED CONFIDENCE INTERVAL

width Eze ; ie ((45724)

Note a loop
. /. likelihood interval is an approximatea÷

100g! confidence interval , where

or see slides for

q=P(WE-2logCp)),W~Xi- proof.n=?, i ' "

In particular, since NO) - X? for large n
,

the

which tells us the minimum value of n

likelihood interval can be written like

needed for the CI to be of width at

&O:RCO)zp}=§O:-21og["]E-21ogcp1}most 2h .

Hence
,
the confidence coefficient is

CHI - SQUARED DISTRIBUTION : XI
PCACO) E- 210g (p) )

= PCWE -210g ( p ))( (45701 )
'

The
"

chi-squared
distribution

"

is parameterized = p( 12-1 E ✓-2logcpT )

gy µ, ayµm
,

, =zp,z,y,,y,p,#
k affects the shape of the resulting pdf :

* not needed
*
PCWEC ) = 2P(zero ) -1 .

pdf=zu÷z)Y¥"É to know .

j Properties :

① If W
, , Wz , . . . , Wn

are iid with Wi~Xu? ,
then

s=iÉwi~Ñ-z
② If 2- ~ 610,1 )

,

then

z2~W~X
③ If Z

, , .
. .

,
Zn ~ Glo ,i ),

then

S=FÉÉ~
④ Also

,

W~Xz=E×



GAUSSIAN DATA : UNKNOWN µ & 0
( (45741)

; at Yi , . . . . Yn
- Glee . " .

where µ
&

HOW PARAMETERS AFFECT WIDTH OF

o are unknown .

CI ( (45788)
We can use the MLE estimator for µ :

The width of the CI is 2a÷
,

where

Ñ Pete a) = T - th
- i.

z Note that

3
We use the point estimator for 02

① f confidence
level ⇒ new CI is wider

② T sample size ⇒ new CI is

narrowed
as k 9

, tk becomes less concentrated
-

we prefer S2 since ECSZ )=o?

← a.m.
at peak

③ 9 sample std dev ⇒ new
CI is wider

"

④...,,,.,.mm⇒wµuµ.⇒①A ru T is said to have a

"

( student's ) t

distribution if its pdf is

fctih)=cuci_±5" SAMPLE SIZE CALCULATION ((45789 )
-

,
In these

,
we assume or is known -

where
- since

'

s
'

depends on n '

cn=,%! "

z
Our CI is thus population Std dev =

5±a£,p(zea,=,z
→

*
we assume

sample std dev .

z The parameter K is called the
"

degrees of freedom
"

,

If we want this to have width 21 , then we

and we write 1- ~ tk or
T~tlk)

.

choose n such that

; Notes :

① The t distribution is unimodal n=(a0
and symmetric about 0 :

CI FOR 02 ( (457-96)② For large k.tk a Glo ,
' )

.

2-~ Go
/ 1) , U~XkZ ⇒N¥,~tk ((45754)

' "

,
let Y, , .. . ,Yn~acµo

) be iid
,

where a & o are

unknown . Then we have shown

"

let 2- naco ,
, ) & U~X

,? be independent . Then z

w="¥~
T-f We pick a. b such that

PCwe b) =
'

has a t - distribution with K degrees of freedom . p(w±a)=¥,pcwzb)=
→
"

Y
, , . . . ,Yn~G(µ, 01, µ, 0 UNKNOWN ⇒

or in other words

~ tn- , ((457-57) pcaeweb) =p
.

*
'

First , see that if since Xi is net symmetric -
'

; Thus
,
our coverage is5=¥FÉCYi P( as cn s b) =p .

then

which can be rearranged to

u=%¥~r p("÷5eo2s")=\
In particular , if Y

, , .
. . ,Yn - Glee ,o) where µ &

'

Thus
,
a loop -1 .

CI for 02 is
=

0 are unknown , then

i:m:
*
this is net symmetric !

* in Ri we use pchisqcw, df
) & qchisqcwidfl .

*
this is a pivotal quantity !

CONFIDENCE INTERVAL FOR µ
IF 5 IS 's A loop-1. CI for I is

UNKNOWN CCYSFGO)

Cet Y
, , . . . ,Yn~ act,o

) be iid where Iin . (✓cn-,✓cn→
Then necessarily a loop-1.

CI for µ is

* don't forget
the

cj-as.j-as-Q.vn
where P(Tea) = ¥

,

where T~tn, , .

" "

*
in R

,
the command

"

ptlt, df )
"

returns

PCTE.tl
,

where T~ tdf .
*

the command
"

qtlt, df)
"

returns

ts.tl?CTEt)--q,whcneT~tdf.



Chapter 5:
Tests of Hypothesis

STEPS OF A HYPOTHESIS TEST V5 5849)
NULL HYPOTHESIS : Ho CCS5825)

"

steps :I The
"

null hypothesis
"

is a single
"

default
"

① Specify Ho to be tested using data Y
.

hypothesis .

eg
"

the defendant is innocent
"

② Define a test statistic DCY)
,

where large
Vd""

of D imply the data is less
"

consistent
" with

-

Hypothesis testing is based on collecting data . and

based on said data determining how plausible Ho Ho .

③ Let D= Dly) : ie the

'

observed value
'

of D.

is .

ALTERNATIVE HYPOTHESIS : HA /H, ((55826) ④ calculate the p-value PCD > d : Ho )

The
"

alternative hypothesis
"

is the alternative ⑤ Draw a conclusion based on
the p-value '

to the null . INTERPRETING THE p-VALUE ((55852)
"

z often, Ha is just the negation of "
° '

If D= Dcy) is large , and thus the p-value PCD>d : Ho) is

eg
"

the defendant is guilty
"

small
,

then either

① Ho is true
,

but by chance we observed an event

TEST STATISTIC / DISCREPANCY MEASURE
that is very unlikely when Ho is true : or

( c.55833)
② Ho is false ."

A
"

test statistic
"

is a function of the data

"
'

What does a

"

small
"

p-value mean?

D=gCY ) that is constructed to measure the
z

p-value
There is

-

evidence against Ho based on the

"

agreement
" between the data Y & Ho .

data .

-

o - Icp
no

z
Note :

0-05 Cp to
-1 weak

① D is a random variable .

0.01 < ps 0-05
some

② If we observe Y=y, we use d=9G) o.ooicpeo.cn strong

Pf 0.001 very strongto denote the observed value of D.

*

We usually define D so d=0 represents the best
these are only guidelines !

possible agreement between Y & Ho .

-

j Depending on the p-value ,
we may

state we

"

reject
"

'
or

Note
"

large
"

values of d indicate poor agreement fail to
'

reject
'

, the null hypothesis .

between Y & Ho - *
we nept

Ho ( or Hi > !

p - VALVE (
CS 5845)

TYPE I & I ERRORS : O, p cc-55861)
"

suppose
we use the test statistic D= DCY) to

A
"

typeI
"

is the probability we

1

test the hypothesis
Ho .

reject Ho when it is actually true .

Let d=gCy)
be the observed value of D.

lie false positive )
Then

,
the

"

p-value
"

of Ho using
D is

A
"

type I error

"

is the probability we

P(D7di fail to reject Ho when it is actually false.

-

j The p
- value is the probability of °bs←Y

( ie false negative)

a value of the test statistic greater
th"

POWER [OF A TEST] ((5864)

or equal to the observed value of
the

'

The
"

power
"

of a test is 1 - p , where

test statistic assuming Ho is true .

13 is the corresponding type 2 error.

'

In particular, a ÉÉ tells us
that if

z
A more powerful test is more desirable .

3

Ho were
true

,

it would be unlikely
to have

In particular ,
observed data at least as surprising as the data

power = p( reject Ho I Ho is false ).
we actually observed .

STEPS ON COMPUTING THE POWER OF A TEST

((55871)
' "

steps to finding a test's power of Ho : 0=00 against an

alternative of 01=00 at significance
level 0 :

① Identify the
"

rejection region
"

; ie the test statistics that would

lead us to reject Ho -

② For a specified value of 0=100 , compute the probability

a sample would yield a test statistic in the rejection

region .



p - HACKING ( CSS 878 )
' "

"

p
- hacking

"

is repeating experiments or

being selective with one's results to

falsely engineer a

"

significant
" result .

ONE - SIDED TEST ((55881 )

A
"

one - sided test
"

is a hypothesis test where

Ho : 0=0
'

H,:O>O'CorO<\
we may

use the test statistic

D=ma×iY-O',o}
*
symmetric for

case

where 0<0
'

.

Our p
- value is thusP ,

where

d-- y
- O

'

.



HYPOTHESIS TESTING FOR G(µ, 0) PARAMETERS
TESTING Ho : µ=µo, 0 UNKNOWN POWERING A STUDY ((55919)

((55895) ; usually , we fix a to a certain value and ask

'

Let Y, , . . . . Yn~GCM.ch
be a random sample, what sample size we require to attain a

where 0 is unknown . specified level of power
.

Recall
'"z For ✗ = 0.05 , the power is

PCI < Mo - 1.96¥ ) -1 PCI > go -11.963g ) .

~ tn-1 .

S / In so we should find ns.t .

I - P
= Pty < µ, -1.965g

) + PCI >No-11.96¥ ) .
To test Ho :µ=µo ,

we use the test statistic

More generally . to obtain power
1-p we seek ns.t .

☐=¥YPCY-cjuo-z-%F7-l-p.JW.by? Notice E[I] =µo if Ho is true '
where I ~a(µ , Fn ) , µ & o are known ,

and

our question
is

"

is 1) =D surprisingly large
"

?
2-

%
is such that p(z< a) = E- for 2- ~ Go't

)
-

ie our p
- value is

"

This is equivalent to

P(Dzd ; Ho )
= PC > d : Ho )

I -u
plz = ⇒ <M-ZI.gr?I-)--i-p--P(lTl3d).T~tn-i=1-P(-dtTl-

d) . which can be rearranged
to

Our p-value is thus

ns.foltqg?n7-P)-)d@pczca)=1-pJ.p=l-PC-dsTtd)@Pw-of-pczc
M°- 1=1 - p ⇒ Z

, .pe 1¥ - Zak
where T - tn -1 .

In R
,
we may

use 7%+2-1 -p⇒ I
<

¥o

ttestCy,m ⇒
n :[
" 5.

TESTS OF HYPOTHESIS & CIS ((55914)

The p-value for testing Ho : 0=00 is > p

'

Note the result holds for µocµ or µo>µ .

if the value 0=0
,

is inside a 100" -P> % TESTING Ho: 02=002 , µ UNKNOWN

CI Casing the same pivotal quantity ) . (CSS932)
eg Ho : µ=µo for GG-0)

dat"

Recall

Then p-value zoos
c⇒ PC 7 l¥¥g

'

) zo.us
Stern ( n -1) SZ

I
- In? .

C. ⇒ p( IT / z1§Yf I > o.us , T~tn -1 "
we can use the pivotal quantity

2
(⇒ PCITIE '§_w 1<-0-95 u=÷
(⇒

± a
,

0.95=171-11 Ea )
If µ

,
: o=og is true ,

then it follows
that

G)
a. c- [j - aÉ .

5-1%7 u~X
which is a 951. CI for µ . j Note large and small values of ° Provide

evidence against Ho .

The p
- value is then appate1y

p
=
{ ZPCUEU) ,

PCUEU) < 0.5

yzpguzuy.pguzu.gg#
where

u~Xni,u="¥-

* END of content for MTZ .



LIKELIHOOD RATIO TEST STATISTIC

; Recall the likelihood ratio statistic

1=-21%1 )

where É = MLE of 0 -

z

For large n
,

we showed ^~Xn
-1

'

TESTING Ho : 0=00 USING A (( 55958 )
"

To test Ho : 0=00 using ^ :

① Find LCO) & Rco)=Y÷, from the

sample .

② compute

RCOO) = - 210g CRCOO )) = -210Gt )
,

ie the observed value of A
.

③ Find the p-value

p=P(W3RCOo))=2[l-P(ZEN-21ogCRco5f,
where 2- v60.1 ) & Wrx

,
?



Chapter 6:
Gaussian Response Models

'

idea : we want to study the relationships
between variates ( in bivariate data) .

2
One possible method : sample correlation

.

r=

Vssyy
' %p= ¥-19 -E) Cpi -15 ) ,%÷

LEAST SQUARES ESTIMATES
'

How can we fit a straight line to bivariate
SIMPLE LINEAR REGRESSION ((65998)

data?

n Idea: *

n ✗ +

''

✗

✗
this line ✗ = explanatory① o - the sd of the × 's ( unknown)

e.

g.+g.
.

"

does not fit
"

- Variate
this ""

the data

✗
well . . .

that we,,
.

② fÉpy
-- the mean y

- value in the

y= response
study population with ✗-value ×

. variate
'

In
particular .RESIDUALS ( (65978)

- 4=910) = mean y
- value amongst data sit ✗=O'

The
"

residuals
"

are the distances between

Thot really useful )the fitted line and the data
.

yn -

p represents the
"

increase
"

in the mean y
- value

( response)
✗ =

×;q;×¥× in the study population for a one
'

unit
'

increase in

the ✗- value
.××

( this is the same regardless of × . )
( explanatory ) "

we assume yi~GCY-pxi.ch for i=1
, . . .sn , and so

3LEAST SQUARES ESTIMATE ((65979)
o represents the variability in the

response variate Y

Usually , we find the fitted line y=9+p× =

in the study population for each value of the explanatorythat minimizes the sum of squares of the

variate × .

residuals .

Estimates of a & p , ie
"

é " &
"

pi
"

, are
LIKELIHOOD FUNCTION FOR 9 & 13 ( (651004 )

called the
"

least squares
estimate

"

.

Our likelihood function for ✗ & p is

We want to find I & § that minimizes

LCr.pt-expl-ztz-Z.cyi-a-px.IQ#=gcr.p)=-=?cyi-r-pxii@
( since we assume Yi~G(o+pxi , 0 ) )

which are given by
"

So
' to maximize LG.pl, we minimize

é=j-pI,p^=- iÉcyi-a-p
Sxx

but this is just the least
squares problem !PÉhhr . We can get I & p^ by solving - "

the simultaneous eq1s 3 Therefore ,
the MLES of ✗ & p are

/ ¥=¥É4i - r-pxii-i-zzcyi.r-pa.in,=o I=5-p^I,p^=C

g
n( d§=¥¥lyi - r-pxii-i-gzcyi-r-px.sc-a.) =o REGRESSION PARAMETERS : Ñ , B

n

We call the values of 2 and § abovewhich resolves to 4=5-pI & ¥,Cy; -9-134-14=0 .
the

"

regression parameters
"

.
Set 4--2

, p=p^ . Algebra gives us the desired
result (see slides for full details .)
In particular,

E=¥×=÷÷-V¥T=r✓¥#,.
Thus

,
the

sign of p^ =

sign of r
,

and

pi and r are linearly related
.

In R
, we can do this using

>emCy
or we can create a

"

model object
"

> mod c- lmcynx)>summaryCm



DISTRIBUTION OF § 4651011 ) HYPOTHESIS OF NO (LINEAR) RELATIONSHIP
'

A corresponding estimator for p is ( ( 651023 )
A discrepancy measure for testing Ho :p=po

Ñ=¥Éc×i-× is

If each yi~GCI-pxi.ir) independently , then it

follows that

Ñ~G(P'¥ which is larger if the data are surprising if

Ho is true .

PWO-fshekh.pt is a linear combination of Gaussian rv.

Since µc×)=i-px ,
a test of Ho :p

__ 0 is a

⇒ p~ is also a Gaussian rv .

test of the hypothesis
that µcx)

does

PIVOTAL QUANTITY OF p IF
0 IS

not depend on × .

KNOWN ((651013)
CI FOR µC×)= ✗+ BX

( (651034)"
Thus

,
if oishnown , a pivotal quantity for

p~ is A point estimate for next is

*
✗ is a value we

pi - p ñc×,=f+p^×=5-P^c×-×- "

plug in
"

to µ .¥Ñ~a and so
the corresponding estimator is

ESTIMATING 02 IN SIMPLE LINEAR Ñc×)=I+p(×
REGRESSION &

We can show
that

THE MEAN SQUARED ERROR : SEZ
( (6510/4) µ~(×)=I(L_c×-I)")É=

"

If 02 is unknown
,

we estimate it via

where Yi ~ G(o+p×i. 0 ) for each i.

sÉ=÷Flyi-2-p^×ii=÷(Syy-p^s×y÷ This has distribution

T T
the

"

mean Ñc×)~G(µcx),o✓t_'#squared error
" the

"

sum of squared
errors

"

PIVOTAL QUANTITY OF p IF
0 IS

where Ñcx) = [ + p~× & µcx)
= 4+13 ✗ .

UNKNOWN ((651020)
Equivalently'

We can show that

cn-Y.se#~xn=j.@*no+en-z . ofÉ?- ~ aeon )
.

Sxx
Hence

,
recall that

since 0 is unknown , we use the pivotal quantity
1- =

u,¥~tk ,
U~XI.7~GIO.tl

and so

÷÷÷
'

A loop
. /. CI for µc×)

= at px
is

CI FOR 13 (( 651021 )

Thus
, if Pl - atte a) =p for T~tn-z.ci f_p^×=TSe✓t_c¥J

loop -1. confidence interval for p is

where PCTE a) = 1¥ &

T~tn-z.PL/5-afE-spep+anfe--).CI FOR 4 ( (6510-38)
"
since yeol = ftp.co) ,

a loop-1. CI for 4 is given

(
or Pltsa) = ) . by

For testing Ho : p=po ,
the p-value is

é±ase✓±+¥p=2[l-PC-e'¥×_-)##
where T~tn.sn .



CI FOR AN INDIVIDUAL RESPONSE Y AT ✗

"

Question :

"

what is the CI for Ysuchthat.io
PREDICTION INTERVAL [ FOR A FUTURE

RESPONSE Y ] ( (651049)

A
"

loop -1. prediction interval
"

for a future response

Y is
*
note the + I

Ñ-p^x=ase✓1-t_l×j×-f (which is absent

in CIS ) .

where PCTE a) = 1¥
,

T~tn-z.ie?-i=ii+aiaiiiseiian..nforgivenvaineos- × .

We thenhat

Y=µlx) + R ,
R~G(0,0)

independent of Y , , . . . ,Yn .

We established

Y~aco-ipx.ir)
& Ñc×1~aco+p×,o✓÷+'×j¥ ) .

Then

Y -Ñ(✗I = Y -Mix) + Mx
) -ÑC× )

= Rt TµCx) -Ñl×)] .

Note R is independent of µ~(×) since it is not

connected to the existing sample .

Thus the equation is a linear combination

of ind
, normally dist rv

,
and so is also

normally dist .

i. ECY- ÑCX) ) = ECR -1 [µl×) - ÑCx)] )

= ECR ) + E(µl× ) ) - ECÑCXD
= 0 + µl✗ ) - µ(✗ I = 0 .

: . Var( Y _Ñcx)) = Varcy) + Var / ÑCXD
= v2 + o2[ In + (×¥÷ ]
= oh [ / + f- + (× ]

.

Thus
Sxx

y - rich = GCO
, o✓l+÷+'×¥- .

Thus

naw,

and since o is unknown we use

se

- tnz
.

The corresponding CI is the one above .

z In R
,
we can use

> predict ( data,
data . frame ( x --75 ), interval -_

'

prediction
'

)



GAUSSIAN RESPONSE MODELS
"

,
The general form of a Gaussian response SUM OF SQUARED ERRORS / SSE
model is ( (651063 )

; The
"

sum of squared errors
"

isYi~GCMCxil.co/.i--1i-.-,#-
independently where ✗ i

are assumed to be ssE=¥,Cyi-y
known constants ( possibly vectors ) .

We can also write this as
where Ji = 13^0 + ¥2, pijxij .

Yi=µ(xi)-
"

The smaller this is
,

the less
'

error
'

in our

model fit .
Where Rin GCO

,
o) independently .

In particular.
122 STATISTIC ( (651064)
"

The
"

R2 statistic
"

is
① µ( × ;) is a

"

deterministic
"

component; ,

② Ri is a

"

random
"

component - R2=1-§fLINEAR REGRESSION MODELS ( (651056 )
In particular .In

"

linear regression models
"

,

the deterministic

component takes the form pz.svariationy.ca?aiIadn.an.boTnre9ressi0#&K

ECYi)=µl×i)=Po-EPj×#= ADJUSTED 122 - STATISTIC ((651065)
so that ECY;) is a linear function of a vector '

The
"

adjusted R2
"

is

of explanatory variates for unit i ( ✗ i=l×i1 , . . - ,
✗
ik
) )

aaiñ=i_s÷Y& unknown parameters poi - - ipu .

In particular , where k= # of explanatory variates .

① The pj are called the
"

regression coefficients
"

; & This tries to
"

compensate
"

that adding more

& more variables will (potentially artificially )② The
xj are called the

"

covariates
"

.

increase R2 .
MULTIPLE LINEAR REGRESSION ((651058)

ASSUMPTIONS ( (651067)
If we wish to fit the model

Assumptions we make for Gaussian linear response

ECYni)=µ×i)=Po-§Pj×#= models :

① Yi ( given covariates × ;) has a Gaussian distribution
then we seek parameters po , . . ..pk that minimize

with Std dev or which does not depend on
the

K

=¥Cyi-Po-¥Pj✗i covariates ; &

② ECY;) =µcx;) is a linear combination of known covariates

z In R
,

we use ✗ i=( ✗ i , , . . . ,
✗
in
, and the unknown regression coefficients

poi -- -, Ph .
> mod c- truly ~ ×

, + Xz)

We must check these are suitable !>summaryLm
GRAPHICAL METHOD TO CHECK MODEL

CCGS1069)
"

we can use graphical methods to do this : in particular,

① Make a scatterplot of y against × :

Then ② Do the points seem to fit reasonably along a

13^0=-1-01375
straight line ?

§, = 0-73142

- ie is it linearpfz = 0.28225

③ Are the points generally
"

spread out
"

to the same

INTERPRETING p^j ((651060)
extent regardless of × ?

"

pig. can be interpreted as the amount of
- ie is o dependent on × ?

increase in response y
when ×;

increases

÷,

÷
?_? !

by one unit when the otherpre-dit.rs |÷÷÷÷i÷÷:✗
I /

✗
2 , - - -

,

✗

j - 1
,

✗
jt , ,

- - '

i

✗ k

are ne×ef.
good bad

( gets more spread out

HYPOTHESIS TEST OF Ho : Pj __ 0 (( 651061 )
as ✗ 9)

To test Ho :p,
- =0

,
H
,
: Pj -1-0 , we use the test

statistic

t;==¥%Spj.
' '

z
If Ho is true

,

then

tj~tn
where k= # of parameters .



USING RESIDUALS TO CHECK MODEL
QQ- PLOT OF RESIDUALS ( (651082)((651070)

we let our
"

fitted response
"

to be
Since r?* a aco

,
, )
,

a QQ- plot should give

Ñi=Ño-Bi✗ii--"-p^k approximately a straight line if the model

assumptions hold .

- for simple LR
, Ñi : ftp.x.MULTICOLLINEARITY ((651094)-

The
"

residuals
"

are
-

"

Multiwllinearity
"

describes a situation when

r^i=yi-Ñ two (or more ) of our explanatory variates are

this represents what has been
"

leftover
"

after
highly correlated .

the model has been fitted to the data ' -

'

This can occur when we have collected data

"

We assume Yi~G(µCx;), 07 , and in particular. on several variates on the same subject .

This can make us deduce incorrect conclusions .

Yi=µi+
PREDICTING BEYOND THE RANGE OF

where Rin 610,0) .

RESIDUAL PLOTS ((65107-3) COVARIATES ( (651097)

A
"

residual plot
"

is a plot of the points
'

we may be tempted to predict an outcome

( Xi , I;) .
for a covariates value outsi.de/-herange-

If the model assumptions hold
,
the points of those in our dataset .

① should lie more or less within a horizontal
However

,

band around the line r^i=0 ① Our model assumptions may no longer
② with no obvious pattern . hold

,
and we have no way of

checking them .

② Our predictions might also not make sense
.

STANDARDIZED RESIDUALS : FT ((651077)
We define the

"

standardized residuals
"

to be

÷=÷="
z If we plot ( ✗ i , r^i* ) instead of ( ✗ i. I;) :

① The plot looks the same
,
but be

"

scaled
"

;

&

② The Fi* values lie in the range C-3,3) since

Fi
*

I 610,1 ) .

RESIDUAL PLOT TYPE 2 ((651080)

If we have a more general linear model

ECY;) = µ ;
= Po + B. ✗ it + - • ' + PKXIK

we can plot (Ñi . Fi*) , where

iii. =p? + Pix, + . . . + Ñu×ih .

We can use this to check the assumption
about the form of MIX;) ;

we check if the points appear randomly

scattered around a horizontal line at 0 .



BINARY OUTCOMES ((651099)
ODDS RATIO EOF AN EVENT] : odds (E)

ODDS RATIO & LOG ODDS RATIO
(CG51105)

The
"

odds
"

of an event E is ((651121)
-

"

,
Let 0

,
be the odds of E

, ,

& Oz be the

oddsCE)=, odds of Ez .

If odds (E) = § (
"

the odds of E are a to b
"

)
,

; The "

odds ratio
" of E

,
relative to €2 is

then 0ddsratio=°PCE)=a, The
'
'

log odds ratio
"

of E
,
relative to Ez is

GENERALIZED LINEAR MODELS / GLMS
logoddsratio=log(%-((651108)

-

' "

alms
"

have the following properties :
'

'

y
If y ; =p, + p ,✗i ,

then p ,̂ is our estimate of the

① A probability distribution for the outcome variable :

log odds ratio of a one unit increase in ✗ -

② A linear model 7=130+13,× , + . . - + Ppxpi
&

ASSUMPTIONS FOR LOGISTIC REGRESSION
③ A

"

Linkmen
"

relating the linear model to

((651128)the parameters of the outcome distribution .

Assumptions for logistic regression
:

LOGISTIC REGRESSION ((651109)
① Events are independent : &

"

logistic regression
"

is a GLM for binary outcome

② A linear relationship exists between predictors and the

data .

rtssmphns : log odds .

① Outcome can be modelled by a binomial rv : One option : split the data into tertiles /quartiles etc .

&

② we want to model p,
the probability of

success .

A common link function is
"

logit
"

:

gcpi-logitlpl-log.li?-).pc--o.i#-p
which maps from [0,1 ] → [-0,1-00]

.

This is the log odds of success .

USING logit IN LOGISTIC REGRESSION

( (651110)

Assume we had a single explanatory variate ✗ i ,

and let pi be the probability unit i experiences
the outcome .

We can use logit to relate this probability to a

linear model of our data :

gcpi1=logitcpi)=1og(¥)=po-P
'É} This can be rewritten as

Pi=i+¥É
'

In R
,
we use

< modltglml offer ~ grade , family =

'

binomial ' )<summaryCmodt
to get the estimates for the linear model .

,
we use

cpredictlmodl.newdata-da-a-framelgrade-801.type-iresponse.jp
to get the offs directly .



COMPARING MEANS OF TWO

POPULATIONS
TWO - SAMPLE GAUSSIAN PROBLEM

PIVOTAL QUANTITY FOR µ , -Mz ( (651146)
((651139 ) '

From the previous results
,

thus

A
"

two - sample Gaussian problem
"

involves

Y
, ;
~ GCM .

01
.

i=1 , . . . , n , independently : & ÷÷~tn÷
"

Yzi~GUz.ir/.i--li...,nzindependenHy.&-
z This is a special case of the Gaussian

( since Z~aco.it , U~X,i independently ⇒ T=v¥p~tk )
response

model .
CI TOR

µ, -µz ( (651147)
HYPOTHESIS TEST THAT TWO MEANS ARE

THE SAME ( (651140)
"
A loopy. CI for µ , -µz is thus

To check if µ ,
-_µ , , we use c==y,-yz=aspV÷_↳

to : µ , =/2

or equivalently where PCTE a) = 1¥ & T - tn
,
+ nz - z .

Ho:µ-µ TEST STATISTIC FOR Ho:µ, _µz=o ( (651149 )-

The test statistic for Ho :p ,
-

µz=o isPOINT ESTIMATORS FOR µ , &µz ( (651141 )

First
,
note the ML estimators for µ ,

&
µ, are ☐=¥÷÷Ñ,

= I = ¥2k.Ñz=I=÷§! with observed value

and so a point estimator for µ , -µz is a=¥÷Ñi-Ña=Y, "

In particular, large values of d would be surprisingz Since ii. = I, ~GCµ ,,¥
,

)
, Ñz=yz~ aye , ,✓¥ ) if Ho is true .

independently , it follows that
p - VALUE FOR Ho :µ , -µz=O ( (651150)

Ñ1-Ñz=Y-Yz~G(µ-µz,o✓÷ "

The p
- value is thus

and so p=2[l-PC-<#
where T~tn.tn

,
-2 .

COMPARISON OF 2 MEANS WITH UNEQVAL_
POINT ESTIMATOR FOR 0 ; THE POOLED VARIAN-CES.CC651156)

ESTIMATOR FOR VARIANCE : Sp
>
( (651143) APPROXIMATE PIVOTAL QUANTITY FOR µ, _µz

'

First , define
(C.651157)

'

Suppose instead that

si = ÉÉCY ; -5,5
Y
, ;
~ G(µ , , 0

,
)
,

i=l
, .
. . ,n , independentlygz=n÷§,,y,,y yzi~ayy.yg.i.n.i.nzinaepenaa.my#-

where we dint assume 01=02 .

which are the point estimators of 02 based on only
If n

, , nz are large ( 330)
,

we can use the
the Yi . & only the Yzi , respectively . approximate pivotal quantity
Our point estimator of 02 is then

si=""÷; ¥÷+=.my#z-i-nz,y...y,y,...-nz,yi.y& .

ynu, , an approximate , , go. µ , .µ ,

which is the
"

pooled estimator of variance
"

. c==µi-µz=a✓÷_¥j Note ECSPZ ) = oh
,

so the estimator is unbiased . where P( 2- c- a) =
'

,

2- racon )
.( It is NIT the ML estimator . )

Our pivotal quantity for spa is

cm+n;?~x;



PAIRED DATA
-

"

Paired data
" considers scenarios where

the Yi 's are related to the Yzi's .

eg Yi = movies
, Yz; = their sequels

Suppose once again
that

Y
, ;
~ G(µ , , 0

,
)
,

i=1
, .
. . ,n , independentlyYzi~GCMz.ozl.ie/.....nzindependenHy&-

but the set of Yi . Yzi is net independent
with each other .

"

, Then

VarcI_yJ)=_-2cov..%i
which is smaller than for an unpaired experiment .
To make inferences about

µ , -µz ,
we analyze the

within -
pair differences

Yi=Y,i_YziVi=1,..#
by assuming

Yi-Yii-Yzi~GCM-uz.o.tl/i--l..--.nf-
independently .

To test Ho :p,
-µz=o , we use the test statistic

D=l~tn-,CifHoistm
and our

p
- value is

p=2Cl-Pl_Ed
where T~tn-1 .



Chapter 7: 
Multinomial Models & Goodness 
of Fit Tests
MULTINOMIAL LIKELIHOOD FUNCTION ((751184)

' "

,
we consider P - VALUE FOR Ho : 0=00 ( ( 751193)

CY.i.i.si/k)~Mu1tinomialln.Oi,-..,Ok& The observed value of ACOO) is

'

The likelihood function based on y , , . . . ,yk is RCOo)=2¥ÉYjl0g(T
LCO

, , . . . , 0k ) = P( 4=0, , . . . , 4<=0,, i 0 , , .. - , Ok) where
g. = ÷ .=y,:?:Q"...q For a sufficiently large sample . we can use

the p-valueDitching the constant gets us that

p-vatue-PCWZXCOoll.W~XL.i.ph#L(Oii...,Ok)--O,Y'...OkYkfT
where p = # of parameters estimated in formingTESTING Ho :O,

= - - - = Ok ( ( 751184) Ho .

Suppose we wish to test
*

Ho:O,=...=Q<c⇒Ho:O=Oo=(÷..., degrees of freedom = K - l -
p because these are the

parameters that are
"

free to more
"

.

"

we note that the MLE of Oj is
2 ( when we estimate parameters, they are

"

locked
"

) .

Éj= .

'
"

z
Guideline :

"

sufficiently large
"

roughly implies ej >
5 for a" j .

LIKELIHOOD RATIO TEST STATISTIC FOR
- if this is not satisfied, we can

"

collapse
"

two or more

Ho : 0=00 ( (751187) adjacent categories with the smallest expected probabilities .

The likelihood ratio test statistic for Ho is then

NOo)=-2log(Y%-,
where

E=( ¥
.

. . .

.

¥1

oo=(÷...LCO
, ,
. . . . Ok) = 0 ? ' . . - O

,?
" -j¥oj% .

This evaluates to

/
observed

ncOo)=2IYjl0g(¥),Ej=^=
\

> expected
where Ej is the

"

expected frequency
"

of Yj .



PEARSON'S ZZ GOODNESS OF FIT STATISTIC

((751201)

The
"

Pearson's ZZ test statistic
"

is

D=z"i~X,
For large n

,

D & ^ are asymptotically equivalent
& have the same asymptotic 72 distribution .

'

Note we need to account for any parameters
we estimated .

eg If we assume Poilo )
.

we need to account

for
- sample size

,
n

- MLE of O
,
E } so degrees of freedom .

✓ = K - I - I = K - 2 .

'

4
Our p-value is thus

p=PCW3d),d=§↳i",W~X?.,.p-
TWO-WAY TABLES & INDEPENDENCE TESTS
((751218)

LIKELIHOOD FUNCTION FOR Ho :O, ,
= 413" "

2- way tables
"

have the following form :

((751229)

^|¥"
"° "" """d &""" "S""" °"""" "

n=y,,|"T"

((011,0/2,021,022)--0,1%10,21202)<102,122+-4
,

tolal|a=y"+yz,n? The ML estimates are

z
We are concerned whether there is a relationship Éij=%,i=1.2,j=-between A & B , and in particular, whether

with corresponding estimators

they are independent .

MODEL FOR TEST OF INDEPENDENCE ((751224) Éij=×,i=i,z,
We define the random variables

PARAMETER ESTIMATION UNDER
Y
, ,
= # of An B outcomes

Yz = # of An B- outcomes Ho: 0 , , = 013 ((751230)

Yz, = # of ÑAB outcomes If Ho :O ,,=ap is true
,

then the likelihood function isy,,#.,gn,g.u,,
( (O ) = 0

,?
"

0
,
?" Oz?" @2,422

Then our model is
⇒ L(Kp )

= (Op )
""

[act - p)]
" "
[ ( 1-a) p ]

>
"

[ ( 1-a) ( 1- pi ]
"
"

CYn.Y-z.Yz.Yzzl~multinomialln.tn/Qz.Ozi.Ozz&- ,,y,+y,,,,,,y,+y,py,,y,,,,,,y,+y①
where

O,,=PCAnB)O,z=PcnnB--
"

"

The ML estimates under Ho are

Oz, = PCÑAB ) Ozz = PCÑNB ) f=Y"L,p^=Y"LYHYPOTHESIS OF INDEPENDENCE ((751227)
To test whether A & B are independent, we use the with corresponding ML estimators

null hypothesis ñ=""-,p=%-n#-HO.it?CAnB)=PCA)PCB#-
This is equivalent to

Ho:Q,=op,d-P(A),p=PCB--

-



LIKELIHOOD RATIO TEST STATISTIC FOR LARGER TWO - WAY TABLES ( ( 751254)

Ho :O,, = 413 ((751233) Let Yi
,
-
= number of individuals in category Ai &

category Bj in a sample size of n .

The likelihood ratio statistic is

É; Let

LCF.PT
NO) = - 21091

,É,gI ) Oij=PCAi
Then our model is=

- nose""""÷÷÷÷÷:÷¥÷" . CYii.Yz.n.gl/ab)~Multin0mial(niOii.Oiz....,Oab).f22

=zi
HYPOTHESIS FOR INDEPENDENCE ( (7-51256)
; Let

where

4=PCAi).pj=PCB-
← t

sample size ,
since we are estimating

'

"

z
To test if A & B are independent variates

,
we test

n
a & p'

"

This is also
equivalent to Hoi-Oij.li/3jVi--1....,a.j--l.....b.I--i÷÷i÷÷÷i÷i*:⇒→⇒i÷-i÷i

www.msn.me#-.a*ni"
eij are

where

E
, ,=nIp^ ,

E,z= n ICI-F) , eij=",i=1,...,a.j=i,...Ez,=n(1-Ñ)p ,̂Ezz=nC1-Ñ)ll-p where
total of now i

*

using v01 = 2£ Yjlogc ) . ri=#ofoutcomesunderAj=i

Our
p
- value is thus approximately Cj

= # of outcomes under Bj .

p= PCW > A) = 2[ I - P( 2- EVI )]
,

)
total of column j .W~X? . 2- ~Gco, 1) LIKELIHOOD RATIO TEST STATISTIC ((751259 )

where I is our observed value of ^ .

"

"

The likelihood ratio test statistic is then

^=2IÉ¥Yi;1og(.
with observed value

a b

R=2¥_,¥yij1og(÷
In particular . if Ho is true and

eij >
5 i. j , then

_n=Ñcam
Pref . degrees of freedom ,

I
91 - -

-

,
Ta - i

v = K - l - p
= ab - I - ( a- , ) - (b. , ,

-7
P' ' - ' ' ' Pb-1

*

Since 4a= I -9, - - -- - da, , ,= ( a- 1) ( b- 1) . #
we don't estimate ra !'

Our p-value is thus
similar with Pb .

p=PCW
where W~Ña

- 1) ( b- 1)
'



Chapter 8:
Causality or Relationship?
CAUSAL EFFECT 6851278 )

'

; we say
✗ has a

"

causal effect
"

on Y

if , when all other factors that affect

Y are held constant, a change in ✗

induces a change
in a property of the

distribution of Y .

*
this is impractical

since we cannot hold aI factors

that affect Y to be constant !

we should design studies so
that alternative

explanations of what causes changes in the

distribution of Y can
be ruled out ,

leaving ✗ as the causal agent
REASONS 2 VARIATES CAN BE RELATED

EXPLANATORY VARIATE IS THE DIRECT THE ASSOCIATION MAY BE NOTHING

CAUSE OF THE RESPONSE VARIATE ((851281) MORE THAN COINCIDENCE (( 851289)
-

'

R: A change in the explanatory variate :

Reaso The association may be nothing more

directly causes a change in the response than coincidence .

variation
BOTH VARIATES MAY RESULT FROM

eg drinking tea & thirst

Note that even in this case
, we may

not see A COMMON CAUSE -

a strong association . CONFOUNDING /LURKING VARIATES

eg playing the lottery & winning the lottery ((851292)

RESPONSE VARIATE IS THE DIRECT
"

treason : An association between 2
z

CAUSE OF THE EXPLANATORY VARIATE ((851283) variates may
be observed because

¥ \> y'

R2: similar to Reason 1
,

but now the causal
both variates are responding to changes

relationship is
"

flipped
"

: the response
variate directly in some unobserved variate or variates .

causes the explanatory variate . These variates are called
"

confounding
"

THE EXPLANATORY VARIATE IS A CONTRIBUTING
, variates .

BUT NOT ONLY
, CAUSE OF THE RESPONSE VARIATE SIMPSON 'S PARADOX ( (851294)

((851285) -
"

"

Simpson's paradox
"

describes the phenomenon
-

R3: The explanatory variate is a contributing cause
,

but
where the association between 2 categorical

not the sole cause , of the response
variate '

variables is different than the association after

eg diet & type of cancer controlling for one or more variables -

z
In particular, we may

think we have found a solecism ' eg - for each

Age coke Pepsi
individual now ,

when in actuality we have found a necessary
contributor

É|É""→ "he is bi""

to the outcome . - but for the

eg HIV & AIDS µ|¥,!I¥;¥,%!;%?Y total
. Pepsi :S

bigger !
- we need HIV to get AIDS ( so it is a necessary

contributor ' → age is a confounding variate .

- but HIV is not necessarily the sole cause of AIDS

( there might be other factors ) .

BOTH VARIATES ARE CHANGING OVER TIME

( (851287)

RI: Nonsensical associations can result from correlating

two variates that are both changing over time .

eg global avg temp .
& # of pirates

- they both decrease as time increases

- but are not related in any way



THE IMPORTANCE OF RANDOMIZATION

( (851301 )

'

Randomization is important since it ensures

the other variates will be approximately equally

distributed across the categories
-

ESTABLISHING CAUSATION IN OBSERVATIONAL

STUDIES (c.851304 )
'

To establish causation in observational studies
,

we need at least the following 4

features :

① The association between the 2 variates must

be observed in many
studies of different types

among different groups
.

- this reduces the chance an observed association

is due to a defect in one type of study

- or from a peculiarity in one group of subjects

② The association must continue to hold when the

effects of plausible confounding variates are
taken

into account .

③ There must be a plausible scientific explanation for the

direct influence of one variate on the other variate .

- so a causal link does not depend on the observed association

alone .

④ There must be a consistent response :

ie one variate increases ( or decreases ) as the other

variate increases .



CAUSAL INFERENCE ((851308 )
INVERSE PROBABILITY WEIGHTING'

"

causal inference
"

is concerned with identifying

causal
, merely than just

associative
, relationships - ( (851326)

É'
z
we are interested in causal effects , and quantifying PROPENSITY SCORE : Ttx) ((851327)
the effect of a change in some variate on some let

µo= ECYCO)) & µ ,
= ECYCI ) )

.

outcome . The
"

propensity score
"

is

COUNTERFACTUALS ((851311)
We write YCI ) for the result of a TK×)=PCN=l|X#
response variate given one value of which is the probability A is true given

wvariate

the explanatory variate
,

and similarly value × .

Yeo) for another value of the explanatory
"

We write Tix) for our estimate of Tix ) for a given
variate . ✗ .

we can then write the causal effect as ESTIMATING Mo & µ , ((851333)

Ya)-
"

"

We can estimate µ^o & j, by

If we let y.ci ) & Y.co ) be the corresponding ñ=÷¥'¥i¥=÷É¥÷,
random variables for unit i

,
then it follows

that the
"

average
causal effect

"

is roughly Ñ°=÷iÉ?¥Y×}=÷§?¥÷
r=[CYCl)-Y where to

:p }
is the indicator function for the statement P.

Note for each unit we can only observe one of Yco ) India: we give more weight to more unusual data

or YCI ) ; in Ñ , , and the other way around in Ño .

the other is called a

"

counterfactual
"

or

"

potential
3

Note the above µ^o & § ,
are unbiased .

outcome
"

.

COVARIATE DEPENDENT TREATMENT ESTIMATING THE CAUSAL EFFECT ( (851336)

((851315 ) We can estimate the causal effect

Consider the following 3 scenarios : ñ=µ# I # 2

A ④←

"

assigned
" A B

"

This is also unbiased .

/ \
,

/ → since µ^ , µ^o are unbiased -

② ← response
variate

No relationship between A &c

Relationship between A&C ASSUMPTIONS FOR IPW (Cgs /342)
we measure how B changes with we measure how B changes Assumptions needed to perform Ipw :

C with C
'

z consistency - a counterfactual outcome is
equal# 3

to that which would have been observed had

A → B
"

B
"

been different .

- we set¥
Yi=YilO)Cl-Ai)+YiC1)AiB is chosen based on A

Relationship exists between A & C
'

; ta+TCSUTVA) -

we measure how B changes
with C

there is no interference in the value of the

For scenarios # I & #2
,

we can perform a standard

B's .

analysis :

① Let Yo
,
Y
, be the riv . denoting

the - often reasonable
,

but not always !

value of C given
B or - B respectively :

-

eg vaccines

② suppose Yo~aquo.ro ) & Yi - 491.91 . NÉdqs CNUC ) -

③ carry out a test of Ho :/☐=p , using methods
the assignment of the B's is independent of the

from earlier in this course - potential outcomes
, given covariates

.

j However, this may
not necessarily work in scenario

- we write

# 3 .

→ since A influences
B
,

B's effects are Yco1,YC1#l-/
exaggerated . Positivity - there is a non - zero probability of assignment to a

category of B for all subjects : ie

O<PlAi=llX=×)<→



DIRECTED ACYCLIC GRAPHS ((851350)

we can use directed acyclic graphs to model ( hypothesized) CHANGING PATHS ((851359 )causal relationships .

We can change the status of a path by controlling foreg
screen time→ obesity or conditioning on a variable for our analysis .

eg↳ this shows we hypothesize screen time causes obesity . P¥i#MEDIATOR ((851351) &
consider

screen time
→ physical → obesity

activityscreen time → physicality→ obesity -

parental education is a confounder for screen time &

obesity"

physical activity
"

is a mediator . -

"

including
"

parental education in our analysis
"

closes
"

the

CONFOUNDER ((851352) backdoor path .

" consider
Note :

parental ① Controlling for contours is Kodi
- removes the confounder from analysisI

.

obesity

✓
- so estimate is more accurate .

activity
②

controlling for mediators is head ."
"

Parental
education" is a wn#.

-

causes incorrect estimates of the overall

COLLIDER ((851353)
association between the variables

"

consider
screen time → physical /activity → obesity

parental

-\
. v

"""""

scme→phys
obesity

É Conditioning on
a collider changes the path from closed

activity
to

open
.

parental%fnw⑦
\
.

"""""

s.mn#me-spnysia-?besity"

self-harm
"

is a collide between screen time &

obesity . activity

DIRECTED PATHS ((851356)
In a

"

directed path
"

.
all arrows point in the

same direction . This transmits a

nsal association -

eg screen time → physical activity → obesity SELECTION BIAS ( (851367)
Any associations represent a causal relationship .

"

Selection bias can be visualized in DAGS '

BACKDOOR PATHS ( (851357)
'

This often takes the form of colliders .
'

In a

"

backdoor path
"

. two variables share the parental
same cause .

\
.

"""""

im→pobesityPy-education activity -

screen time
→ physical → obesity

activityÉ The association
by this path is nsa'

' - If selected adolescents for the study because of a prior
CLOSED / BLOCKED PATHS ((651358) history of self-harm

, we can view this as conditioning /'

In a

"

closed path
"

.
two variables affect another

controlling that collide
.

variable .

LIMITATIONS (( 851369 )parental -

Limitations of DAGS :

\
u

① They are qualitative : they do not indicate the

"""""

gme→
besity form , size or direction of a relationship .activity

② They are limited by the information available to form%fnw⑦ them : it must be complete to give a proper
causal

interpretation .
③ They depict ranr ; confounding can occur even

when treatments are randomized
,

which is not shown

in DAGS .


