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Chapter 1:
Introduction
REGRESSION THE SIMPLE LR MODEL

........In regression modelling, we attempttoexplain 8. We can describe the observed behavior ofthe

or accountfor variation in a response variate (y) response with a model thatincludes both

by using a model to describe the relationship ① a "deterministic component"thatdescribes the

between y
and one or more explanatory variates variation in y

accounted for by the functional

form ofthe underlying relationshipbetween
(X, X2, ...)

y&x;d

SUMMARIES OFTHEDATA
ey

with the overhead data, the det. comp.

.Asimple (2 model involves:
is

M
=

B0 +BiX.

① Asingle explanatory variate;&

where me
the mean value ofy for a given

0 Asingle response
variate.

2

value ofX-

eg
Overhead data example:

② an "error term" s that describes the random

response (y):
claimed overhead ($)

explanatory (x):office
size (sq. ft variation in

y not
accounted for by the

We can summarise the datausing .....
underlying relationship with x.

a scatter-plot. &2 Putting these together yields the "simple LR"

(or SLR) model:

yi
=Bot B, xi +Ei·

① Bo:the "intercept"parameter

② Bi =
the "slope"parameter

③ i =the index thatdenotes the observation

number.

IX.. .. .. n is explanatory data; y...... In
is

&
...

To geta numerical summary ofthe data, we

can use the "sample correlation coefficient". response data).
*note

Bot B,X;is deterministic d e is random.

↳see
Note-1<r1 and that is unitless.

&' tells us the relative strength of the linear

relationship.



THENORMAL SLR MODEL FITTED MODEL

,we typically assume in SLR that 8.For the SLR model, the fitted model is

No,or, it...., a +B,y,M

isas
anormal model

where I
is the estimated mean value of

I given a value of X.

,X;+Ei, s,
Id rco, or

FITTED RESIDUALS

.The "fitted residualof the its observation,

.Assumptions needed touse this model:
ei, is defined as

3

① the functional form (ie linear) of the relationship

between y &X
is correctly specified by the ity:-(B+,xil.

deterministic componentofthe model;

② errors follow a normal distribution;
*

E:is a random variable in which we

③ errors have a constantvariance of impose assumptions;

Cie "homoshedasticity"):& e;is the difference between the observed

④errors are independent. response & estimated mean response.
....

LEAST SQUARES ESTIMATION OFMODEL ⑦2 If we take the partial derivative wrteach

PARAMETERS parameter and set =0 in our least

,Goal:we wanttofind values ofBod B, such that
squares procedure, we getthat

for the data
Zei =0

y, =B0 +B,x,
+E,

xiei =0.↳ ↳
·

Yn =B0+B, Xn
+En, .These constraints allow us to calculate the

the sum ofsquares ofthe errors IEis minimized. remaining 2 residuals from n-2

observations;

.The values of Bo & B, obtained by this procedure
so we say

the fitted model is

Idenoted Bo & B.) are known as the "leastsquares associated with n-2 degrees offreedom.

estimates" ofB0
& BI.

⑤ We show that.....

↳i
Proof. We wish tominimize

S(p0.B,)
=E,9 =E, ly:-(BotB,xil]2.

See that

2
=

-2,5yi - 1 +,xi))
-Bo

e
=- 2 xity;-(+5,xil].6 B,

Since we wanttominimize S, we can solve

=0
1

=0.

&Bi

The resultantsolutions for Bo & B, are the desired

values as required. Is

In R, we can get
these values via

&am=Im response
- explanatory).



LEAST SQUARES ESTIMATEOF02: E2 ITERPRETATION OF PARAMETER

8.In the normal model, we assume ESTIMATES

E:nd NCO, 02). ,we may interpret, as the estimated

mean change in the response y

:"In any
leastsquares regression model, we estimate

associated with a change ofone unitin

&
or by dividing the sum of squares ofthe

..... We
mayresiduals by the degrees offreedom. ⑦ interpretBo as the estimated

....

In particular, this means our estimate for or 2

mean value ofy at x=0 only&
3
is ifx=0 is a relevant value and

-

↳iii. is in the range ofvalues we used

tofitthe model.

*Note EC2]:or lie o2 is unbiased).
*
never extrapolate to values ofX

-
outside the range

used tofitthe

RESIDUAL STANDARD ERROR:O
model.

ThedalStundeer
en

'sLastly, we can interpret
o as a

measure of the variabilityof the

response
aboutthe fitted line.

can be interpreted as the estimated INFERENCE FOR BI

std dev ofthe errors & measures the To investigate whether there is a linear

random variation ofthe response given
a relationship between y & xin the

population, we can testthe hypothesis

.....

& valueforo is, the more the variation

......Bi=0then either use confidence3

in y is "explained"by X, and so the
⑦

better fitthe
model is.

2

intervals or hypothesis
tests to test

this -

Iis partof
the summary

R output for the

s To do this, we need the leastsquares

fitted model:
estimator of Bi

↳



S

DISTRIBUTION OF BI DISTRIBUTION OFBO
,we can show for the SLR model that "Similarly, we can show in a SLR

↳*
model,

Proof. First, note -

B=E ↳spo.
1x;-

y
-

-Y:cxi-x CIFOR BI
.....

&A (1-0) 100% confidence interval for B,
E -
-

is

Then,
oIne""in mtico,or Inthe 1-0 SES), SECBil=

Since Yi =Bot B, Xi
+Ei, thus I
-

Y;-NCBotB,Xi, o & Y;are ind

-tr-2, 1-412:
=the critical value from a

and so

tn-z distribution corresponding toa

Bi =ZC;Yi -Normal (by properties of

confidence level of(1-0)
100%

normal).
·

Then &"An-2, 1-4 SECB,)"is called the "margin
E(,) =E(IciY;) =. (potixis oferror"of the interval.

"We can use R tocalculate this:E
-

-x) +B,zx;(xi-x) 3

z(xi - x)2 > summary (data.
(m)

=
= B, Ixixi-x)

- ,xx) x +qt(1 -8,n -2)
-

z(xi- x12 ↳ The CI is then 126.33 -t (10.88),

=B,z(xi -x)2
126.33 ++ (10.88).

-Bi
2(xi -x12 ,we may interpretthe CI as that

Similarly, we are (1-0) 100% confidentthatfor
- -

3,) =
Var(IciYi)

Var(I
=ZcVar(Yil .:Yis inde

every additional increase ofa unit

ofX, the mean increase of y is

=2
between (startof(I)

& (end of CI).

- If"B, =0"is notin the interval.
-

there is a significant
then we say

Hence B, -NCB., 5) as required.
relationship between x & y

cat

....
Itfollows

that
the (1-0) 100% confidence level).

&z
E

-ta
...

Hypothesis testfor Bi

① Ho:B,
=0 iHA: BIFO

② (Assuming Hol our teststatistic is

(from STAT231/330 result).

°XThis can be used toget t-based CIS & - - =s
hypothesis tests for BI

③ p-value is p=2P(Tt), T-tn-2
-> In R:

>p(2*(1
- pt(t,n-2))

④Check ifP<0.05;if yes, reject

Ho.



Chapter 2:
Multiple Regression
MULTIPLE REGRESSION MODEL

LEAST SQUARES ESTIMATION OFB
:Ifwe expand the SLR model to

p explanatory variables, we obtain the rimteZ5y:-(Bot,xit... +pxemultiple linear regression model: I--
X,+...+pip

+Ei, i = 1,...,n)I over Bo, .... p.
- Taking partial derivatives and setting to0:

.This can be expressed as

EIR ziiiten nx I(p+

p=-22xiply"-otxil +...+pXipl =a
NORMAL MODEL :This yields the normal equations

For the normal model, where we assume

2:NC0,02), we write

Iy =xB +E,-mUNCO, oIl, i- I ·

- B.Zip +, IXilipt... +p2x, =2xip4;
where Varis) =o2Iis

the covariance
-

matrixof the error random vector a

,we can write this as

andM=xy

#xx)xx+y)I
-

-note this needs XTX to be invertible;

in full rank/ all columns are linearly

independent.
.....

&Note:
① The fitted line is given by

ofteamakese
IFans ofresiduals is Zein-e



THEHAT MATRIX:H GAUSS-MARKOU THEOREM &

,we can express isby BLUE

xxxsxy =Hy 8.The leastsquares estimator

I xxy- I
where

#x is the "bestlinear unbiased estimator"

(BLUE) of B.
I'smore formally, ifwe consider the model

is the "hat" matrix

which maps the vector ofresponse
variables given by

-tothe vector of fitted values.

I y = XB +2, ECE) =0, Var(s) =
wI

2.Note that e
① It is symmetric (ie HT=H);&

then amongstall
unbiased linear estimators

2OH is idempotent(ie HT=H).
* =my, the leastsquares

estimator

, We can express our residual vector e as

I(=y - Hy =(1-Hy) B =my has the "smallestvariance,

-

it

tVar()+acm*-m(1m* - mst)LEAST SQUARES ESTIMATION OF I
82 -

"The leastsquares estimate ofor for a p
where (m*- MICm*- mITis positive

explanatory variable multiple regression model with semidefinite.

<p+1) parameters is - A is "positive definite"if aAac,o

T
for any vector a

where df =n-(p+1).

RESIDUAL STANDARD ERROR

.The residual standard error is thus

it
equivalentene

leastsquares
estimate;in the likelihood

function

I
- f(y;)

-

-

-ni...y).reiots,a
or equivalently the log likelihood function

I,..,yn)=

c-Xist...
+pxip

is

citedatPipethatminimisesI-



DISTRIBUTION OFB CIS FOR Bj

,we show that 8.AC1-1100%. CIfor Bjis

Am,wrcxxs -;)1

II 3j I tn -(p+1), 1 - 4/2
- -
where mum is the multivariate normal

:IfBj =0 is notin the CI, then

distribution.

proof. First, we have there is a significantlinear
relationship

-

y =x+9,
9-MUNCO, o2I). between y & Xj

Thus, by properties ofmur, HYPOTHESIS TESTS FOR Bj
y- mvN(X, o2I). .Hypothesis testfor Bj:

Hence B =(xTx)"xy also follows a
①Ho:Bj = 0,HA:B;to

mun distribution. ② t =i =Next, see that
SECB;)

ECB):ExxTX)
"

xTy) ③ p-value =2PLT<t), T-n-cp+
=(xTx)x EtY]

=(xx)"xT(XB)
④RejectHo ifp<0.05.

=B
Then

var() =Varcxx)"xTy)

=(xx)xVar(Y) [exx)"xT]
+

(VarCAY) =AVarIY) ATS

=xTx)x[cxx)"xTy
+

=oxTX)
-x+xcx+x)

- 1

= (XTX),
which gives us the desired result.

1

2 The marginal distribution ofBjis

thus

Fix(.) kjz....pl-

I I Tx
- 1

I ja
-
ihave

that

E-nepen,rail
"

& Also note that
4

Mij)=arcxTx);I-
3jINTERPRETATION OFY

.jis the estimated mean change in the

response
associated with a change of

one unitof X;whilstholding
all

other variables constant.



MULTI-COLLINEARITY CIFOR Mnew
,we say 2 or more explanatory variables Idea:We may wanttouse our

exhibit"multicollinearity"if there exist
fitted model to estimate the mean

strong linear relationships between them.

response of a new unitin the

.....

Ez This

①increases the variances (and thus sid Popularar
errors) ofthe associated parameter mtxew Yestimators; I 3

-

-

② leads towide/imprecise CIS & inaccurate

.Then, we show
that

conclusions from hypothesis tests.

--VARIANCEINFLATION FACTOR/ I ~new -N(xhew, wxhew xx)"xnew-
VIF

The "variance inflation factor"is a Proof. Recall

B -muN, wcxx)").
measure of multicollinearityassociated with

Then new newsmustalso follow a

some explanatory variable xj.
..... normal distribution.& How tocalculate VIFfor X;:
2 see that
① Regress X;onto

all other x's;ie
Elnew)=E(xnew BS

fit models for X;againsteach
=xnew E(B)

other X;

② Then
-xnew B

Fit,
Then

I -

S

var(newl=Var(xnewP)
- =

xnewVar() Xnew
where R is the coefficientof

-oxTnew(XX)"xnew
determination ofthe model fitwith

This gives the result, so we're done. By
x;as the response. .....

B. Thus, a (1-0)% confidence interval
- in R, R,is the "multiple R squared" for new is

parameter -

2Generally, we remove x,from the model if -meteptis.1-IraxNew
~IF;> 10 < => R, 2.90. I
In R, we can do

WII variable we
variables

are testing-
and check the multiple R-squared value.



PREDICTION INTERVAL FOR MODELLING CATEGORICAL

EXPLANATORY VARIABLES
Ynew

,we can code categorical explanatory variables

.Idea:We may also wish touse

using indicator variables thattake on

our fitted model topredictthe values of0 or 1.

value ofthe response of a new

eg x, =I [A =a,], x2 =I [A
=a2]

unitofthe population.
I =the indicator function.

.....

8. Then, note the variance ofnew
8.For a variable with a category levels,

is composed of2 sources ofvariation:
we need l-1 indicator variables.

① the variation associated with the

parameter estimators;& In particular, ifX is a categorical

② the variance of associated with a variable thathas a distinct values

random response. a, . . . ., 99, we can use the model

Thus our total variation is Ex,t... +Bee-.)
-TewIXXIknew I
-I where Xi =

FIX=ai].
-

i Hence, a (1-0) 100% prediction interval for - (X, , . . ., xe - 1)
=(0, .. .,0) corresponds with

Ynew is x =ae

-tptic,1-
X)xew

. Then, each Bicorresponds tothe

I differencein the estimated mean

- value ofthe response where X= a;

CONFIDENCE& PREDICTION BANDS relative towhere X Faj.

FOR THESLR MODEL INFERENCEFOR PARAMETERS

8.For the SLR model, ASSOCIATED WITHINDICATOR

VARIABLES

↳Xknew +* To testwhether there is a difference

in is between data where xi=1 vs.

.Thus, the closer knew is toX,
Xi

=0, we can use the following
the narrower the CIS & PIs.

hypothesis test:

Es:"In general, the closer ix,...., xp3 is to
①Ho: Bi

=0;HA:BiFO

x,..., xp3 in the multiple regression ② We gettip from the summary

model, the narrower the interval.
outputfrom the model fitdie (m);

&

③ Ifp<0.05, we reject Ho.
.....

⑦ To testwhether there is a difference

in is between data where Xi=I vs.

Xj=1, we can use the following

hypothesis
test:

①Ho: Bi-Bj
=

0, HA:Bi-B. FOI
② We can derive

=(B:-j, w(xTx)! +(x+x;; - 2xx)-I is
-

③ Thus we get

iBY.p=2PCTH, Trt-iI
-



ORTHOGONAL X MATRIX ANALYSIS OFVARIANCE(ANOVA)

DESIGNS ,we can express the total sum ofsquares

We may wish tomodel categorical ofthe observations y;as

variables in a way thatcreates an

Eitly;-gi:Zis"+ eorthogonal Xmatrix, thus producing I
independentparameter estimators.

by Suppose we had 3 categorical In particular,
variables X,, X2, X3, each with ① The "regression sum ofsquares"
-

2 values 0 & 1 StReg) is the variation

We can define explained by the
model;&

Xi=1 ② The "residual sum ofsquares"
-

xi
=!, xi =0. stress istherate isare

This yields the "X" matrix

model.
- I

- I i In ANOVAmethods ofinference, we

! - I

draw conclusions aboutthe relative fitof
I

- I

x =(I I I models by comparing SScrey) & SScres).

the columns
of "x are orthogonal,

. The greater SSCreg) is compared to

Note
sscres), the better the model fit.

and in particular COEFFICIENTOF DETERMINATION/

(xTX) =8 Iy,(xx)* =Ey, where MULTIPLE R-SQUARED:R2

"The "coefficientof determination"is

In is the 4x4 identitymatrix.

Hence or(XTX)=Var() is diagonal, indicating Atl
independentparameter estimators for the normal

R2 measures the proportion ofthe
2

model. variation in the response explained by

In particular, when comparing one level toanother the model.

in Xfor a given factor, itcorresponds to F-TEST FOR MODEL PARAMETERS:

an estimated mean change in the response B, =... =Bp
=0

Idea:To testifa relationship exists

of2Bj.
between the response

at leastone of

-since parameter estimators are independent, the explanatory variates, we can use a

they are unaffected by inclusion/exclusion
F-test.

ofother variables Method:
2

- sO we do nothave toaccountfor other ①Ho: B,-...
=p

=0;HA:7j s.t. B; Fo

variables when interpreting the parameter ② Test statistic:

estimates associated with a given factor.

-eg?-ietheI
③ Under Ho, F has a F distribution

with p, n-p-1 degrees offreedom.

④The F-teststatistic & p-value are

provided on the lastline ofthe

summary' outputfor
em.

⑤We rejectto if p<0.05.



ANOVA TABLE

,we summarise the testHo: B, =...=p
=0

in an ANOVA table:

EssieintI
source

P

"SStot,Ress forthe

/
ADDITIONAL SUM OFSQUARES

,consider the "full"model of :In R. we can use the anova function#X, +.. . +pXp +9,2-N10,02 to do this

I-
and the "reduced"model thatreflects the

restrictions imposed by B,....
.Bu

=0, kEp, ie I#Bu+Yn+,
... +BpXp

+E.I-
ic "After accounting for BI, ...,Bu,

does? I of

Buty...., Bp accountfor significant variation
8.Note thatour previous ANOVAmethod

in y?" to testHo: B, =... =p =0

To determine which model is better, we is justan additional sum ofsquares

can examine test where our reduced model is

1Regt!-sscein I
9,9 NCO,w4.

Similarly, we can
also testHo:Bi=0

which is the difference in the variation explained using the additional sum ofsquares

by the full a reduced models. teststatistic

s We can testHo:B, I...
-Bu = 0 with the F

Iteststatistic #redRestene
#teasesfullarea

ofthe

full model with xjomitted & under Ho.
I where our reduced model is justthe

-
where under Ho. Fr Fafred-offull, offull.

Fr F,p
si our parade is PCFS, Festl, Fr Fafreaoffull, affull

(Note P(1tIv> 1t1) =PCF,+2.)



ADDITIONAL SUM OFSOUARES & ASSESSING MODEL ADEQUACY /

CATEGORICAL VARIABLES RESIDUAL ANALYSIS

isuppose we have a model .Idea:We can assess the "model adequacy"

sie the validityofthe
model assumptions(

#B,x,+2Xz +5

by examining the fitted residuals e =y-r.
where Xi =IIIA

=a;],where Ais a

RESIDUAL PLOTS

categorical variable. ,we can plotthe residuals ei againstthe

To testHo:B,-B2=0, we can use the

fitted values i.
reduced model under Ho:B,*Bc=B*;ie

iB*xxte :
!

I
7 ....

.....

where x
*=I [A =a, or A =a2]. ⑦ Ifthe model assumptions hold, then ei

2

: We can then use the additional sum and ;should be uncorrelated.

3
.....

ofsquares statistic & proceed as before. ⑤ Thus, ifthe model assumptions hold, we

GENERAL LINEAR HYPOTHESIS
3

should see no observable pattern in the

.The "general linear hypothesis"is in the plot.

form
So these are notvalid

.

ABp+
describes the element I I

e;

... i
constraints on

the full model as described ;
(non-constant

by Ho- subservedartici
error variance)

..... relationships
⑦ In particular, we can use the additional sum

2

ofsquares teststatistic totestHo: && PLOTS

under Ho, In a ad plot, we plot the ordered

residuals e,is againstthe expected

I F= ordered values ECZ,,, ), z, -NCO, 1).seqatrea-after-Fatrearafux, afqul;we use on plots toasseshere

eg Ho:B1 = BC:Bz =By
=

0 can be expressed as
....,

assumption of normal errors.

& In particular, ifthe errors (and hence

to: (i)():E
residuals) are from a normal distribution,

then exis
should be proportional to

ECz,isI, so the plotshould
exhibit

A a straightline relationship.

VARIANCE STABILIZING

TRANSFORMATIONS

"variance stabilizing transformations"are

transformations tothe response and possibly

some ofthe explanatory variates to

improve model adequacy / validity
ofthe

model assumptions.

eg logly), y'", Y
- I

...&These are useful when we can write

2

Iff(ul.
e



PROPERTIES OFTHERESIDUALS LEVERAGE
:Recall we can express "Leverage"is a measure used to

1- H)E identifythose observations whose set

ofexplanatory variables is extreme

......
where It is the hat matrix(H:x(xTxsxT).

relative to other observations.
.....③ Since a -NC0, 021), itfollows that 82 In particular, for observation is2

-IH))I ↳ani =t+
A
e0,0(1-hii))
-

where hisis the ith diagonal elementof 3Properties:

E Note c)=ranuch)=p+1.....

H.

I3

I I -0earthisin-constantraisee "Also note
4

dee)=-whik.jAk I2

-
:=higit;, hij;

-residuals are notindependent
and so we can view the leverage

- resultof constraint zei
=0 in least

as the weightofyis contribution to

squares estimation
the fitted value i

STUDENTIZED RESIDUALS
IDENTIFYING HIGH LEVERAGE

For a random variable X, the "studentized"
CASES

vers

a Residual plots are notuseful in

revealing high leverage points.
- as hiitl, Var(ei) ->0

~

where u
is the mean and o is an estimate -so high leverage observations' leverage

ofthe standard deviation. .....
is close to0.

⑤
- Instead, we can justplot the leverage..... 2

2
A"studentized residual"associated with

values.

observation:is

Iin
a

weeuse thateverageAn ....
if

which is NCO,1) for large n.

itEXTREMERESPONSE VALUES/OUTLIERS I
.An outlier"is an observation for
-

which ei=yi-i is extreme relative

to the other residuals.

In particular, we can consider an observation

an outlier if

Iil2.5.
.....

By causes of outliers:

① Typos/ mis recording ofdata;

② values of associated potential explanatory

variables notincluded in the model;

③ Random variability.



INFLUENTIAL OBSERVATIONS FORWARD SELECTION

,we say an observation is "influential"if :Seeall
single variable SLR models;

its removal from the line fitchanges
② selectvariable with smallestp-value co;

the fitted line lie parameter
estimates)

③ Fitthe p-l 2-variable models that

considerably. include the variable in Ri

IDENTIFYING INFLUENTIAL ④ RepeatD-B, continuing toadd

OBSERVATIONS variables ateach iteration until no more

,we can quantifyinfluence using "Cook's variables can be added.

distance":
STEPWISE SELECTION

Idea:inl ① Begin with forward selection,

- ② Employ both forward selection

where E2 is the estimate of the variance & backward elimination ateach

from the model fitwith the ith observation step until no more variables can

included. be added /removed.

.....

⑤ we say an observation is strongly influential ADJUSTED R-SQUARED
.....

if

It
⑦,

mwReee
MODEL SELECTION Note R2 will always increase when more

variables are added regardless of

whether the variables accountfor a· significantamountofthe
variation of

2Ifwe remove variables from the

.....

the response.
use

122 to compare
model, both SSCRes) & the of & Hence, we cannot

2

model subsets with differing amounts
increase.

...Ifthe increase in sacres) is small

.....

ofparameters.
②relative to the degrees of freedom
3 Thus, we can use the "adjusted

gained, then I will decrease, resulting R-squared":

....

in a more precise model.

it-enenee& This is often the case for variates with I4

large associated p-values.
....

-

& 2

will only increase ifthe
ITERATIVE MODEL SELECTION 4 Radi
"Idea:build a reduced model by variation accounted for by the

adding/removing
variables one ata

added variables increases proportionally
time, a refitting ateach iteration

more than the degrees offreedom

until no more variables can be added/
decrease through the model

removed.

BACKWARD ELIMINATION
parameters.

j Note we can also write

.Idea:
① Fit all p

variables; Eximis2

② Remove variable with largestp-value I Rad,
greater than some threshold Leg

=0.1)
soiRd;implies a small a

③ Refit with remaining variables;

and W. V.

④Repeat0-8
until no more variables can

be removed.



MALLOWS' p MODEL SELECTION IN R

E.For a bivariable model CKI,.,pC, To selectthe bestmodel in R, we can

we define use the "leaps' function, which selects

I
the bestmodel from all possible subsets

esn+2cken based on the Raj & Cp criteria.

- eg

Note smaller p values relative tothe

number ofvariables are associated with

more suitable models.

:A n-variable model is preferred over the

full model if

1lyk+1.

②
....Note
2

① the full model has a higher RP value,

as ithas more parameters;but

② the reduced model has a higher Rad;value
& a lower value.o

INTERACTION

,we say
there is "interaction"between x,x

ifthe effect ofX;on the
response

depends on the value ofX.

&"To accountfor a possible interaction effect,

we can include the term title in our

model.



FITTING LINEAR MODELS TO TIME SEASONAL COMPONENT

SERIES DATA :Idea:We can add model parameters

to accountfor the seasonal variation

8."Time series data"is data syth, where

in the data, which mightexacerbate

If denotes the value of the

response at time t (t=1,2, ...). any trends.

'variation in time series is caused by: TREND COMPONENT

① "Sonal"- repeatregularly over fixed Idea:We can accountfor the trend

intervals componentin
the model by adding

② "Frend"- persistentincrease/decrease in Mt appropriate time variables leg +, t2, etc)

as I increases

③ "Gyical"- oscillations repeating
over irregular

intervals

④ "Fear/random"- other sources ofvariation

unaccounted by
0-8.

AUTOCORRELATION FUNCTION/ACF

8.The "auto-correlation function"is

itistheI
and quantifies the degree ofsimilarity

between It& the "lagged"version of

itself, yt-h:

⑤
...

Note
① Iral1

Xhi&

② In is unitless.

CORRELOGRAM

A"correlogram"is a plotofan over

2 (for k =1, 2, ...).

-
"Significance

⑤"We can use the lacf' function in R

to plotthis.



Chapter 3:
Logistic Regression
Idea:Suppose we want tomodel DISTRIBUTION OFB;

a binary response
variable :"LetB;be the MLEofBj
#

observation is successfull Then, for sufficiently largen, we

I Xi 10, otherwise
can show that

-

2

where P(Yi=1) =Hi- -" We can model Mi=ECY,)=ii using I -

I Ho:Bj =0 TEST,vine
second equinin

To testHo:Bj =0, we can use

the "Wald teststatistic"

is called the logitfunction.

In R, we can fita logistic regression unicht,
under Ho

model using

2
Note the teststatistic &It+X, family -binomial clinke'logit's
.

P
p-values associated with this

ITATIONOF LOGISTIC REGRESSION
are given in the summary'

PARAMETER ESTIMATES output of the glm model in

Hence, a 100L-d)1 CI for Bi

rating,theart -Be R

I
I

↑

I "Sitz,sEs,
we can get -

and a 10011-51CI for the

ith odds ratio isI
- Witt,SE(B;where Myst is the value ofEIX,) I

after increasing one unitofXj.

this "odds ratio"as

.Thus, we can interpret

the multiplicative change in the odds of

success for a change
in one unitofXj,

after accounting for the other variables.



DEVIANCE/ D MODEL COMPARISON-AKIAKE
8.The likelihood function for a

INFORMATION CRITERION / AIC
logistic regression model with a

binary response is 8.The "AIC"is defined as

x

,fi-, Ezepti)- zecfitted (I
1- y, I- -

... better the

with corresponding log-likelihood : The smaller the AIC, the

-

(yilogt+-yislog-i
fitofthe

model.

I
is

2
:

ianceofthe mode.Fall
-

where

①esfitted) is the log-likelihood of the

fitted model (with MLEFi): &

② elsaturated) is the log-likelihood of the

saturated model, the hypothetical
model

for which pH=n (with MLEFi=yil.

:In particular, the deviance for the binary

response logistic regression model is

-

yilog(,) +logs-yill]I
-

MODEL COMPARISON
- DEVIANCE

,to test whether either xn ..... um
are

associated with a positive response of3

after accounting for the other variates, we

can use the test

/it... -Bum
=0.

-

Our full model is

191,,jx;
and our reduced model is

7thB;x;I j7K,, ..., km-
....

⑤ Ifwe assume to is true lie the

reduced model gives a better fill.

then we can approximate

icostI

I ~ Xafrea of
full
-


